Obsah
1 První pomoc při úrazu elektrickou energií ... 3
 1.1 Postup záchranných prací .. 3
1.2 Ošetření postiženého ... 3
 1.2.1 Ověření životních funkcí .. 3
 1.2.2 Umělé dýchání .. 4
 1.2.3 Nepřímá srdeční masáž ... 4
1.3 Přípravce pomoci .. 5
1.4 Ošetření dalších zranění ... 5
1.5 Oznámení úrazu .. 5
1.6 Sepsání záznamu o úrazu .. 5
2 Hasičské přístroje .. 6
 2.1 Hasičské přístroje .. 6
 2.2 Ruční hasičské přístroje pěnové (na naší škole se nepoužívá) 6
 2.3 Ruční hasičské přístroje práškový ... 6
 2.4 Ruční hasičské přístroje sněhový .. 6
 2.5 Ruční hasičské přístroje halonový .. 6
3 Pájení na plošném spoji .. 8
 3.1 Pájedlo .. 8
 3.2 Pájka ... 8
 3.3 Typy ... 8
 3.4 Tavídla .. 9
 3.4.1 Typy ... 9
 3.5 Další přípravky .. 10
 3.6 Postup při pájení .. 10
 3.7 Osazování desek plošných spojů .. 10
 3.8 Ochrana součástek před elektrostatickým nábojem 11
 3.9 Zacházení se součástkami .. 11
 3.10 Zásady zacházení s deskami plošných spojů .. 12
4 Pasivní součástky .. 14
 4.1 Rezistory .. 14
 4.2 Rozdělení podle konstrukčního provedení: ... 14
 4.3 Charakteristické vlastnosti: ... 14
 4.4 Rozdělení podle technologického provedení: .. 15
 4.4.1 Vrstevné rezistory .. 15
 4.4.2 Drátové rezistory ... 15
 4.4.3 Proměnné rezistory – potenciometry a odporové trimmy .. 15
 4.4.4 Řízené rezistory ... 16
 4.5 Měření rezistorů .. 17
 4.6 Kondenzátory ... 17
 4.6.1 Princip deskového kondenzátoru .. 17
 4.6.2 Svátkové kondenzátory .. 18
 4.6.3 Keramické kondenzátory .. 18
 4.6.4 Elektrolytické kondenzátory ... 18
 4.6.5 Dolaďovací kondenzátorové trimmy ... 18
 4.7 Měření kondenzátorů ... 18
 4.8 Cívka v elektrickém obvodu .. 18
 4.8.1 Cívka ve stejnosměrném obvodu .. 18
 4.8.2 Cívka ve střídavém obvodu .. 19
 4.8.3 Cívka v kmitavém obvodu .. 19
 4.9 Spojování cívek .. 19
 4.10 Použití cívky .. 19
5 Aktivní součástky .. 21
 5.1 Diody .. 21
 5.1.1 Princip funkce .. 21
 5.1.2 Usměrňovací diody .. 21
5.1.3 Svítivá dioda — LED .. 22
5.1.4 Lavinová a Zenerova dioda ... 24
5.1.5 Schottkyho dioda .. 25
5.1.6 Další druhy diod .. 25
5.2 Tranzistor ... 25
 5.2.1 Základní typy tranzistorů ... 25
 5.2.2 Princip činnosti bipolárního tranzistoru ... 26
 5.2.3 Základní zapojení .. 27
 5.2.4 Zesilovač se společným emitorem .. 27
 5.2.5 Napěťový zesilovač se společnou bází ... 28
 5.2.6 Proudový zesilovač se společným kolektorem ... 28
 5.2.7 Matematický popis tranzistoru .. 29
 5.2.8 Rozdělení tranzistorů podle výkonu .. 29
5.3 Tyristor, diak, triak .. 29
6 Plošné spoje .. 35
 6.1 Základní materiál pro výrobu DPS ... 35
 6.2 Označení materiálů pro plošné spoje .. 36
 6.3 Výroba desek plošných spojů ... 36
7 Výroba plošného spoje .. 37
8 Výroba plošných spojů ... 39
 8.1 Zábavná elektronika .. 39
 8.2 Klopné obvody ... 39
1 První pomoc při úrazu elektrickou energií

S poskytováním první pomoci při úrazech el. proudem musí být seznámení i pracovníci poučení - § 4 vyhlášky č.50/78 Sb. Do této kategorie lze zařadit i studenty odborných škol.

1.1 Postup záchranných prací

Výsledek záchrany postiženého úrazem elektrickým proudem závisí na včasném a správném provedení záchranných prací. Záchranné práce začínají v prvé fázi vyproštěním postiženého, pokračují poskytnutím první pomoci (oživovací pokusy, ošetření apod.) a přivoláním lékařské pomoci.

Vyproštění

Nejprve musíme postiženého vyprostit z dosahu elektrického proudu. Nejlépe vypnutím vypínače nebo centrální stop tlačítka, vytážením šňůry ze zásuvky apod. Pokud to není možné, tak odtažením postiženého například pomocí dřevěného smetáku, nebo přes suché svršky (provaz, opasek, prodlužovacím kabelem), přetřením nebo přeseknutím vodiče či kabelu, zkratem atd. Zachránce musí dbát na to, aby postižený po vypnutí proudu nespadl s výšky a nezpůsobil si úraz pádem, ale také na to, aby neohrozil sám sebe.

1.2 Ošetření postiženého

1.2.1 Ověření životních funkcí

Po vyproštění musí zachránci zjistit, zda postižený dýchá a má hmatatelný tep. Pokud není do 7 minut obnoven přívod kyslíku do mozku, může dojít k nevratným změnám na mozku, i když se postiženého později podaří oživit některé funkce mozku mohou být trvale poškozeny. Proto má obnova dýchání a srdeční činnosti přednost před ošetřováním jiných poranění.

Stabilizovaná (zotavovací) poloha

Pokud postižený dýchá, ale je stále v bezvědomí, uložíme ho do tzv. stabilizované polohy. Otočíme ho na pravý bok, spodní nohu natáhneme, horní pokrčíme v koleni, spodní pokrčíme v lokti a předsuneme před obličej, hlava se zakloní a podloží levou (horní) rukou. Uvolníme mu oděv kolem hrudníku, břicha a krku. Postižený se nesmí uložit na záda, protože v důsledku náhlého zvracení by se mohl udušit.

Když je postižený při vědomí, pohodlně ho uložíme, pokud možno v teple a podáváme mu teplé nápoje. Nesmí vstát. V důsledku úrazu může nastat poúrazový šok a s ním i problémy s dechem a činností srdce. Proti šoková opatření jsou tyto: Ticho, Tepluto, Tekutiny, Tišení bolesti a Transport. /5 T/.
1.2.2 Umělé dýchání

V případě, že postižený nedýchá, ale má hmatatelný tep, zavede se ihned umělé dýchání. Provádí se metodou z plic do plic, nebo pokud to z nějakých důvodů není možné, metodou jinou (např. metodou Silvera-Brosche). Aby bylo umělé dýchání účinné, musíme odstranit z ústní dutiny překážky (nečistoty, zvratky, zubní protézu apod.).

Umělé dýchání z plic do plic se provádí, jak je znázorněno na obrázku.

Postižený se položí na záda, podloží pod lopatkami (kabátem či jinými svršky) a zakloní se mu hlava (aby došlo k uvolnění dýchacích cest). Zachránce přiklenek k boku postiženého, položí ruku na jeho čelo, prsty sevře nos postiženého, zhluboka se nadechne, vdechujeme do nosu, u malého obličeje do úst i nosu současně. Frekvence umělých vdechů je 10 až 12 za minutu. Rovněž se musí sledovat, zda se postiženému při vdechu zvedá hrudník. Pokud tomu tak není, jsou neprůchodné dýchací cesty a musí se lépe uvolnit. I když byl postižený nalezen až delší dobu po úrazu a nedýchá, začne se ihned s umělým dýcháním a pokračuje se až do příchodu lékaře, převedení do nemocnice nebo pokud postižený nedýchá sám.

1.2.3 Nepřímá srdeční masáž

1.3 **Přívolání pomoci**

Záchrance se snaží přivolat lékaře. Pokud je sám, nesmí postiženého opustit, ale snaží se přivolat pomoc mobilním telefonem nebo voláním. Přivolat lékaře nebo dovést postiženého k lékaři je třeba i při malých úrazech elektrickým proudem, kdy zdánlivě nedošlo k poškození zdraví. Průchod elektrického proudu tělem postiženého může způsobit změny na životních orgánech, jejichž příznaky se mohou projevit až později.

1.4 **Ošetření dalších zranění**

1.5 **Oznámení úrazu**

Každý úraz související s výukou je třeba nahlásit bezpečnostnímu technikovi, který úraz zapíše do knihy drobných úrazu nebo rozhodne o dalším kroku – sepsání záznamu o úrazu.

1.6 **Sepsání záznamu o úrazu**

Záznam o úrazu se vypisuje v souladu s NV č. 64/2006 Sb. Okolnosti úrazu se musí vyšetřit a provést adekvátní opatření. Záznam se vyhotovuje v 6 kopiích a rozešle na patřičné instituce včetně postiženého.
2 Hasičí přístroje

Na naší škole jsou k dispozici tyto hasičí prostředky: požární vodovod – hydrant a ruční hasičí přístroje vodní, prázškové a sněhové. Pro přehled vypíšu i pěnový a halonový hasičí přístroj.

Co je vlastně hašení. Je to činnost, při které se zamezí přístupu kyslíku k hořlavé látkě nebo se ochlazuje pod zápalnou teplotu, popřípadě se odstraní z okolí snadno hořlavé látky.

Třídy požáru podle ČSN EN 2
A – požáry pevných látek především organického původu jejichž hoření dochází k žhnutí
B – požáry kapalin nebo látek přecházejících do kapalného skupenství
C – požáry plynných látek
D – požáry kovových látek
E – požáry tukových látek
F – požáry uhlíkových látek

2.1 Hasičí přístroj vodní

Vhodný: pro hašení požáru pevných látek např. dřevo, papír, uhlí, textilie, guma a výjimečně použitelné k hašení menších množství hořlavých kapalin mísících se s vodou jako lih, éter apod.

Nevhodný: pro hašení hořlavých kapalin nemísících se s vodou jako benzín, motorová nafta, minerální oleje, dále k hašení hořlavých plynných látek a k hašení látek, materiálů a zařízení, kde je nebezpečí škod promáčením vzhledem k cennosti.

Nesmí být použit: k hašení elektrických zařízení pod proudem a v jejich blízkosti, lehkých a hořlavých alkalických kovů, termitů, karbidu vápínu apod.

2.2 Ruční hasičí přístroj pěnový (na naší škole se nepoužívá)

Vhodný: pro hašení pevných látek a hořlavých kapalin nemísících se s vodou, jako benzín, motorová nafta, minerální oleje, tuky apod.

Nevhodný: pro hašení hořlavých kapalin nemísících se s vodou a dále hořlavých kapalin nízkovroučích t.j. na úrovni okolní teploty a nižší jako petroleum, ditileter a monochloretan.

Nesmí být použit: k hašení elektrických zařízení pod proudem a v jejich blízkosti, lehkých hořlavých a alkalických kovů, termitů, karbidu vápníku apod.

2.3 Ruční hasičí přístroj práškový

Vhodný: pro hašení požáru hořlavých kapalin, plynných látek a elektrických zařízení pod proudem do 110 kV i pro plasty hořící plamenem. Použití pro laboratoře, jemnou mechaniku a elektroniku.

Nevhodný: pro hašení hořlavých kapalin nemísících se s vodou a dále hořlavých kapalin nízkovroučích.

Nesmí být použit: k hašení elektrických zařízení pod proudem a v jejich blízkosti.

2.4 Ruční hasičí přístroj sněhový

Vhodný: k hašení elektrických zařízení pod proudem, hořlavých kapalin, plynných látek a elektrických zařízení pod proudem.

Nesmí být použit: k hašení lehkých hořlavých a alkalických kovů, volně uložených kovů, vláknitých látek, materiálů pro nebezpečí výbuchu a rozšíření požáru.

2.5 Ruční hasičí přístroj halonový

Vhodný: k hašení elektrických zařízení pod proudem, hořlavých kapalin, plynných látek a elektrických zařízení pod proudem.

Mohou se použít k hašení lehkých hořlavých a alkalických kovů, hořlavých prachů a volně uložených kusovitých látek, vláknitých látek a pod. materiálů pro nebezpečí výbuchu a rozšíření požáru.
Nevhodný: pro požáry organických prachů (uhelný, textilní, obilný).
Nesmí být použit: k hašení v uzavřených a špatně větraných prostorách!

Na každém RHP naleznete nálepku na které je uvedeno pro hašení které hořlavé látky je přístroj vhodný a tzv. piktogram to je jednoduchý obrázek s grafickým návodem k použití.
3 Pájení na plošném spoji

Pájení v elektrotechnice a v elektronice se používá pro připojování a spojování vodičů, pro úpravy konců vodičů a pro úpravu povrchů připojovaných míst. Pro dobře provedený pájený spoj musíme mít náležité vybavení:

3.1 Pájedlo
- je nástroj pro pájení, podle velikosti pájených předmětů musíme použít odpovídající výkon pájedla

3.2 Pájka
- je slitina cínu a olova s příměsí jiných kovů. Podle použití musíme mít vhodný typ pájky.

3.3 Typy
Sn40Pb60 - běžná měkká pájka pro všeobecné použití, teplota tavení 183 - 238°C.
Sn60Pb40 - kvalitní měkká pájka pro náročné pájení v elektrotechnice. Teplota tavení 183 až 212°C.
Sn62Ag1 - pájka s přidavkem stříbra. Používá se na pájení postříbřených a pozlacených součástek. Lze s ní pájet postříbřenou keramiku a povrchy. Teplota tavení je 183°C.
Sn62Pb37 - Měkká pájka pro náročné aplikace v elektronice. Je vhodná pro dobře pájetelné součástky. Teplota tavení činí 183°C.
Sn19Ag1,9 - Pájka vhodná pro pájení hliníkových vývodů, slabých hliníkových plechů, fólií a hliníkem pokovených povrchů. Teplota tavení je 176 - 275°C.
Sn32Pb48Bi - Kvalitní pájka určená pro pájení spojů a součástek citlivých na teplotu. Teplota tavení je 190 - 160°C.

Sn62RM89AAS85 - pájecí pasta. Je to pasta z tavidla se zamíchaným kuličkami pájky. Nanese se na pájené místo a ohřeje horkým vzduchem nebo infračerveným zářením.

Pájedla známe transformátorová, odporná, plynová.
Transformátorové pájedlo – pistolová páječka – je stále oblibená pro svoji pohotovost. Používá se pro pájení malých dílů. Pro elektroniku je vhodnější pájka 75W pro menší hmotnost. V současné době nelze používat pro opravy a pájení nejnovějších zařízení.
Odporná pájedla se rychleji zatahují 57 až 500W a používají se na hrubé pájení větších dílů.
Odporná regulovaná pájedla - pájky s regulací teploty hrotu. Jsou vhodná pro elektromekanické aplikace (opravy a pájení součástek), pro součástky v klasické montáži je vhodný výkon asi 30 až 80W pro SMT aplikace stačí 15 - 30W. Klasická nejsou vhodná pro opravy a průmyslové pájení nejnovějších zařízení.
Cínová lázeň je vytápěná nádoba s roztaveným cínem. Používá se při hromadném pájení a cínování menších součástí a vodičů. Vylučí se v různých velikostech podle určení (i jako přenosná).
Důležitý je topný výkon pájedla. Příliš malý výkon nestačí k prohřátí pájené plochy, příliš velký vede k přehřátí pájky a její předčasné oxidaci. Teplota hrotu se podle použití musí pohybovat mezi 210 až 350°C. U odporových pájek lze velmi hrubě teplotu řídit vysunutím hrotu (čím je hrot více vysunut, tím je jeho teplota menší), u transformátorových pájek řídíme teplotu délkou pájecí smyčky (kratší smyčka = vyšší teplota).

Plynové zdroje se zatím často nepoužívají (jejich teplota se nedá jednoduše řídit).

3.4 Tavidla

- slouží k očištění pájené plochy a k zamezení oxidace při pájení. Rovněž po roztavení vytváří povrchový film, který zvyšuje přilnavost pájky k povrchu materiálu. Podle typu pájeného předmětu a pájky musíme použít vhodné tavidlo.

3.4.1 Typy

Bezoplachová tavidla nechávají pouze malé elektricky nevodivé zbytky, ale i ty se musí u cílů elektrostatického zařízení odstranit. Spoj se opětovně roztřepí a rozpočistí (lihem, toluenem, trichlóreetilénem), o kterém víme že rozpustí tavidlo, ale ne okolní citlivé součástky, nebo deminerilizovou vodou (DEM vodou). Ta neobsahuje soli, které by způsobovali elektrickou vodivost. Pro elektrostatické aplikace postačuje i voda obyčejná.

Kalafuna - je to destilát z pryskyřic borovic, získaný při výrobě buničiny. Chemicky jde o směs slaby solodivých kyselin. Při pokojové teplotě nerozpustné ve vodě, s vysokým izolačním odporom a netečný vůči kovům. Taje mezi 60 - 80°C, plně tekutá je při 120°C. V horkém stavu reaguje jako silná kyselina. Má schopnost rozrušit tenké vrstvy oxidů při teplotách 200°C za 1 až 2 sekundy. Proto se přidávají aktivátory a další přísady, které zvětšují čisticí schopnost a zvyšují tepelnou odolnost.

Roztok kalafuny v lihu je tvořen kalafunou rozpuštěnou v lihu. Do roztoku se pájený předmět namáčí, nebo se s ním potírá.

Elektron je roztok na bázi kyselin vodíkových, při zahřátí vytváří kyselé výpary. Po zapájení se zbytky musí ze spoje odstranit opáchnutím. Není vhodný pro pájení elektrických součástek a cílů elektrostatických komponentů.

Eumetol je pájecí pasta pro pájení znečištěných povrchů. Zbytky po pájení se zbytky musí ze spoje odstranit opáchnutím. Není vhodný pro pájení elektrických součástek a cílů elektrostatických komponentů.

MTL408 je určeno pro ruční pájení zoxidovaných kovů pájkami Sn40Pb60, Sn63Pb30, Sn32Pb48Bi, a některých dalších slitin s bismutem. Patří mezi vysoce účinné tavidla. Zbytky po pájení jsou odstraňovány opáchnutím. Zbytky po pájení jsou nevodivé. MTL451, MTL461B jsou tavidla bezpečná a bezpečná pro pájení elektrických součástek a cílů elektrostatických komponentů.

MTL457, MTL468 jsou bezezbytková tavidla na bázi přírodních a syntetických pryskyřic. Zbytky po pájení jsou nevodivé.

MTL888 je tavidlo určené pro pájení Sn19Ag1,9 pro pájení hliníkových vývodů, plechů fólií a hliníkem pokovených povrchů. Povrch pájeného předmětu je měně očistit od povrchových nečistot oškrabnutím (nožem). Bezprostredně naneseme tavidlo a pájíme. Hmotnější kusy hliníku předejdeme. S použitím...
tohoto tavidla lze pájet i slítiny hliníku, ty ale vyžadují větší zručnost. Při pájení hliníku vždy používáme speciální pájku (Sn19Ag1,9), jinak pak použití běžných prostředků nemá spoj trvanlivost. Dbáme také aby hrot páječky nebyl znečištěn olověnou pájkou. Když spojováme mědi a hliník je třeba být alespoň samostatně přeprážejí díly pájku na hliník a poté je spájíme dohromady. Lze naředit ředidlem RMTL-64.

L3 je bezbestykové tavidlo určené pro pájení SMT prvků, X32-101 je běžné bezoplachové tavidlo pro normální aplikace pro strojní i ruční pájení X33-061 je tavidlo pro pájení čisté mědi pro strojní aplikace X33-04 je bezoplachové tavidlo pro strojní pájení při extrémních nárocích na čistotu ECOSOL je vodou ředitelné bezoplachové tavidlo pro strojní pájení FLUX-PEN je jakýsi fix s náplní bezoplachového tavidla RED JELLY je pájecí gel PROZONE představuje vodou nebo alkoholem ředitelný čistící prostředek na odstranění zbytků tavidel.

3.5 Další příprava

Odsávačka cínu je zařízení na odstranění zbytků roztažené pájky. Používala se v elektronice při opravách zařízení. Odsávačky jsou buď ruční (s pístem ovládaným pružinou) nebo s elektrickou vývěvou. Pak mají vyhřívaný hrot.

Odsávací knot tvoří tenké holé měděné lanko napuštěné tavidlem. Přiloží se na spoj a zahřeje. Roztavená pájka je knotem odsáta.

Horkovzdušná jehla je zdrojem úzkého proudu velmi horkého vzduchu. Používala se buď při pájení přetavením k ohřevu pastových pájek, nebo při čištění součástek. Pájka se horkým vzduchem roztaví a odfoukne.

3.6 Postup při pájení

Pájené předměty před zahájením pájení očistíme od zbytků oxidů, rzi a mastnot. Po očištění naneseme na pájený povrch tavidlo a přiložíme pájek. Teprve po rozecháření pájku přiložíme pěkně hrot, a to do místa kde se hrot pájka dotýká pájeného předmětu. Cín přestupuje na ohřátý povrch a roztéká se.

Po vykouření pájku přiložíme pájku do spoje. Teprve při přípravě pájku přiložíme pájku do spoje. Po vykouření pájku přiložíme pájku do spoje. Hrot musíme posouvat tak pomalu, aby s ním tekutá pájka neztratila kontakt.

Při připojování vodičů pájením musíme konce vodičů zajišťovat proti mechanickému uvolnění (omotáváním, obovitím). Pokud počítáme s pohybem vodičů, musí být upraven tak aby se pohyb nepřenášel na pájený spoj.

Při připojování vodičů na desce spojů je důležité nesení pletiva na desce spojů. Po zahřátí vodičů pájením musíme konce vodičů připojit proti mechanickému uvolnění (omotáváním, obovitím). Pokud počítáme s pohybem vodičů, musí být upraven tak aby se pohyb nepřenášel na pájený spoj.

3.7 Osazování desek plošných spojů

Součástky se na desky plošných spojů připojují pájením. Malé a malo hmotné součástky jsou na desce mechanicky zajištěny pouze pájením, hmotnější součástky se připevňují pomocí šroubů, nýtů, zajišťovacích pásků. Velmi hmotné součástky není vhodné montovat přímo na desky spojů, neboť jejich
hmotnost může způsobit prohnutí a tím i poškození desky. Osazené desky se nakonec mohou montovat do nosných rámů, které mohou desky mechanicky zpevnit.

Vlastní osazování součástek je náročný proces. Předem si musíme rozmyslet pořadí vkládání součástek, aby větší a rozměrnější součástky nebránily v osazení součástek menších, avšak citlivé součástky se osazují jako poslední. Nedbale osazená deska je často i po funkční stránce nevyhovující. Zvlášť náročné na kvalitu provedení jsou desky s vysokofrekvenčními obvydby. Elektrické vlastnosti takové desky jsou z velké části určovány mechanickými změramy (délky vývodů součástek, vzájemná poloha...). Pro snadnou kontrolu a orientaci na desce je nutné součástky osazovat tak, aby nápisy byly viditelné. Součástky u nichž nezáleží na orientaci pouzdra (odpory, tlumivky, svitkové a keramické kondenzátory...) se montují tak aby na všech byly nápisy čitelné pouze ve dvou směrech a to z "dolní" a "pravé" strany desky (stejně jako kóty na technických výkresech). Montáž součástek značených čárovým kódem se provádí podle stejných zásad.

3.8 Ochrana součástek před elektrostatickým nábojem

Značka vlevo označuje balení součástek, nebo desky osazené součástkami, citlivých na elektrostatický náboj

3.9 Zacházení se součástkami

doporučuje zkratovat vstupní a výstupní svorky (konektory). Tyto zkraty se odstraní těsně před připojením desky.

3.10 Zásady zacházení s deskami plošných spojů:

Desky nikdy nepokládejte na sebe naležato. Nevystavujte je tlakům které způsobí kroucení či prohnutí desky.

V nevyhnutelných případech snížíme možnost znečištění desky jejím zakrytím a stálým vysáváním odpadu z obráběného místa. Velmi nebezpečné jsou nezralé desky ke skvrnění například nízkým barevným odběhem. Je třeba je konzultovat se výrobce nebo odborníkem.

Před manipulací s deskami citlivými na elektrostatický náboj zkratujeme jejich konektory. Zkrat odstraníme těsně před zasunutím desky do zařízení.

Dnes se stále více používá součástek s velkou hustotou integrace. U takových součástek jsou hodnoty napětí, která dokáží součástku zničit, zhruba dvojnásobně vysoké.

Doporučuje se použití desk s velkou hustotou integrace. U takových součástek jsou hodnoty napětí, která dokáží součástku zničit, zhruba dvojnásobně vysoké.

Některé desky, osazené citlivějšími prvky se nemohou omýt ani pá航运řem. Při manipulaci provádějte opatření pro snížení možnosti znečištění elektrostatického náboje.

Dnes se stále více používá součástek s velkou hustotou integrace. U takových součástek jsou hodnoty napětí, která dokáží součástku zničit, zhruba dvojnásobně vysoké.

Některé desky, osazené citlivějšími prvky se neumí omýt ani pá航运řem. Při manipulaci provádějte opatření pro snížení možnosti znečištění elektrostatického náboje.

Dnes se stále více používá součástek s velkou hustotou integrace. U takových součástek jsou hodnoty napětí, která dokáží součástku zničit, zhruba dvojnásobně vysoké.

Některé desky, osazené citlivějšími prvky se neumí omýt ani pá航运řem. Při manipulaci provádějte opatření pro snížení možnosti znečištění elektrostatického náboje.

Dnes se stále více používá součástek s velkou hustotou integrace. U takových součástek jsou hodnoty napětí, která dokáží součástku zničit, zhruba dvojnásobně vysoké.

Některé desky, osazené citlivějšími prvky se neumí omýt ani pá航运řem. Při manipulaci provádějte opatření pro snížení možnosti znečištění elektrostatického náboje.

Dnes se stále více používá součástek s velkou hustotou integrace. U takových součástek jsou hodnoty napětí, která dokáží součástku zničit, zhruba dvojnásobně vysoké.

Některé desky, osazené citlivějšími prvky se neumí omýt ani pá航运řem. Při manipulaci provádějte opatření pro snížení možnosti znečištění elektrostatického náboje.

Dnes se stále více používá součástek s velkou hustotou integrace. U takových součástek jsou hodnoty napětí, která dokáží součástku zničit, zhruba dvojnásobně vysoké.

Některé desky, osazené citlivějšími prvky se neumí omýt ani pá航运řem. Při manipulaci provádějte opatření pro snížení možnosti znečištění elektrostatického náboje.

Dnes se stále více používá součástek s velkou hustotou integrace. U takových součástek jsou hodnoty napětí, která dokáží součástku zničit, zhruba dvojnásobně vysoké.

Některé desky, osazené citlivějšími prvky se neumí omýt ani pá航运řem. Při manipulaci provádějte opatření pro snížení možnosti znečištění elektrostatického náboje.
namontujeme. Pokud montážní prvky nezajišťují vodivé spojení desky se zařízením použijeme pomocné propojky z lanka a krokodýlku. Pájíme odporovou pájkou napájenou malým napětím. Hrot pájky musí být vodivě spojen se zařízením. U citlivějších desek potřebujeme spolehlivé propojení desky, zařízení, pájky, měřicích přístrojů a své osoby se zemí. Používají se antistatické náramky, boty s polovodivou podrážkou a jiná opatření k zamezení vzniku náboje. Velmi účinné opatření je zvýšení vlhkosti vzduchu a použití ionizátorů.

4 Pasivní součástky

4.1 Rezistory

Základní vlastností těchto součástek je jejich elektrický odpor žádané velikosti.

4.2 Rozdělení podle konstrukčního provedení:

- se dvěma vývody (pevné, nastavitelné)
- s více než dvěma vývody (rezistory s odbočkami, potenciometry a trimry, odporové sítě)

Schématické značky:

```
- - T
```

Rezistor, potenciometr a rezistor závislý na teplotě

4.3 Charakteristické vlastnosti:

a) jmenovitý odpor

Je výrobci předpokládaný odpor součástky. Na součástce je vyznačen kódem tvořeným skupinou čísel a písmen nebo barevnými proužky. Výrobce odpory vyrábí a třídí podle hodnot do řad (E6, E12, E24).

<table>
<thead>
<tr>
<th>Hodnota</th>
<th>Číslo</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>± 10%</td>
</tr>
<tr>
<td>1,2</td>
<td>2</td>
<td>± 5%</td>
</tr>
<tr>
<td>1,5</td>
<td>3</td>
<td>± 1%</td>
</tr>
<tr>
<td>1,8</td>
<td>4</td>
<td>± 2%</td>
</tr>
<tr>
<td>2,2</td>
<td>5</td>
<td>± 0,5%</td>
</tr>
<tr>
<td>2,7</td>
<td>6</td>
<td>± 0,25%</td>
</tr>
<tr>
<td>3,3</td>
<td>7</td>
<td>± 0,1%</td>
</tr>
<tr>
<td>3,9</td>
<td>8</td>
<td>± 0,1%</td>
</tr>
<tr>
<td>4,7</td>
<td>9</td>
<td>± 20%</td>
</tr>
<tr>
<td>5,6</td>
<td>9</td>
<td>± 20%</td>
</tr>
<tr>
<td>6,8</td>
<td>9</td>
<td>± 20%</td>
</tr>
<tr>
<td>8,2</td>
<td>9</td>
<td>± 20%</td>
</tr>
</tbody>
</table>

b) tolerance jmenovitého odporu

Udává o kolik procent se smí skutečná hodnota odporu lišit od jmenovité. Velikost tolerance souvisí s typovou řadou. Řada E6 má tolerance ± 20 %, E12 má tolerance ± 10 %, E24 má toleranci ± 5 %.

c) dovolené zatížení

Je to výkon, který se smí v rezistoru přeměnit na teplo bez nevratných změn funkce součástky. Vyjadřuje se ve wattech a jeho zlomcích (1/8 W u vrsvových uhlíkových rezistorů)

d) nejvyšší dovolené napětí

Výrobce udává nejvyšší dovolené napětí mezi vývody součástky.

e) teplotní součinitel odporu
Dovoluje určit změnu odporu rezistoru způsobenou změnou jeho teploty. U uhlíkových rezistorů je součinitel záporný, u kovových (metalizovaných, drátových) je kladný.

f) šumové napětí
Má dvě hlavní složky: tepelné šumové napětí a povrchové šumové napětí. Vyjadřuje velikost šumu, který rezistor přidává k užitečnému signálu v obvodu.

4.4 Rozdělení podle technologického provedení:

- vrstvové (uhlíkové, metalizované)
- drátové
- speciální (SMD)
- řízené rezistory

4.4.1 Vrstvové rezistory

![Vrstvový rezistor](image)

Provedení vrstvových rezistorů

4.4.2 Drátové rezistory

4.4.3 Proměnné rezistory – potenciometry a odporové trimry

![Proměnný rezistor](image)

Zapojení proměnného odporu (reostatu) a proměnného odporového dělíče

Velikost odporu mezi pevným vývodem a pohyblivým kontaktem na úhlu natočení osy otáčivého potenciometru může být lineární (N), logaritrický (G), exponenciální (E).
Graf závislosti odporu na úhlu natočení u potenciometrů

Odporovým materiálem bývá opět vrstva uhlíku, cermet nebo odporový drát. Životnost proměnných rezistorů je vzhledem k posouvání kontaktu po odporové dráze a jejímu opotřebovávání nižší než u pevných rezistorů.

4.4.4 Řízené rezistory

Jejich elektrický odpor není konstantní, ale závisí ve velké míře na další fyzikální veličině.

Pozistor (PTC) – odpor s rostoucí teplotou také roste. Negistor (NTC) – odpor s rostoucí teplotou klesá.

Graf závislosti odporu na teplotě u PTC a NTC termistorů

Varistor – rezistor, jehož odpor je závislý na přiloženém napětí. Po překročení určitého napětí prudce klesá odpor. Použití: přepěťová ochrana citlivých přístrojů

Fotorezistor – rezistor, jehož odpor je závislý na osvětlení.
Použití: měření osvětlení a zapojení ovládané změnou osvětlení. Nehodí se pro optický přenos dat, protože mají velkou setrvačnost.

Graf závislosti odporu na osvětlení u fotorezistoru a jeho voltampérové charakteristiky

Dále se využívají rezistory s hodnotou odporu závislou na magnetickém poli, radiaci, mechanickém pnutí, vlhkosti, chemickém složení okolí, atd.

4.5 Měření rezistorů

V běžném provozu k měření velikostí odporu používáme univerzální měřicí přístroj. Při kontrole odporu rezistorů v zařízení je nutné odpojit jeden vývod. Při kontrole zařízení pod napětím obvykle měříme úbytek napětí na rezistoru a usuzujeme, zda je funkční (není přerušen).

4.6 Kondenzátory

Základní vlastností těchto dvoupólových součástek je jejich kapacita žádané velikosti. Jsou v principu tvořeny dvěma vodivými elektrodami, které jsou navzájem odděleny dielektrikem.

4.6.1 Princip deskového kondenzátoru

Rozdělení podle konstrukčního provedení:
- pevné
- s proměnnou kapacitou

Schématické značky:

Kondenzátor, elektrolytický kondenzátor a proměnný kondenzátor

Charakteristické vlastnosti:

a) jmenovitá kapacita
Je výrobcem předpokládaná kapacita součástky. Na součástce je vyznačen kódem tvořeným skupinou čísel a písmenem nebo barevnými proužky, tečkami ap. Výrobce kondenzátoru vyrábí a třídí podle hodnot do řad (E6, E12). Výjimku tvoří elektrolytické kondenzátory hliníkové některých výrobců s hodnotami v řadě 1 2 5 10

b) tolerance jmenovité kapacity
Udává o kolik procent se smí skutečná hodnota kapacity lišit od jmenovité. Velikost tolerance souvisí s typovou řadou. Řada E6 má toleranci ± 20 %, E12 má toleranci ± 10 %. Tolerance elektrolytických kondenzátorů bývá větší a nesouměrná (-10 až +80 %).

c) jmenovitá napětí
Bývá uvedeno na součástkách ve voltech nebo barevným kódem. Pozor ve střídavých obvodech je nutno dimenzovat na amplitudu přikládaného střídavého napětí.

Rozdělení podle typu dielektrika:

- svitkové (papírové, styroflexové, terylénové, MP, …)
- keramické
- elektrolytické
- jiné

4.6.2 Svitkové kondenzátory
Jsou tvořeny dvěma hliníkovými foliemi oddělenými dielektrickým materiálem (papír, plastová folie, …). Vrstvy jsou společně svinuty do balíčku a zapouzdřeny do plastu nebo kovového pouzdra.

4.6.3 Keramické kondenzátory
Dielektrikem je speciální keramika na které jsou napařeny dvě kovové elektrody, ke kterým jsou přišroubeny vývody. Provedení je tvarově různorodé – terčové, diskové, destičkové, polštářkové, trubičkové a průchodkové. Rozměrově jsou nejmenší, mají i nízká jmenovitá napětí.

4.6.4 Elektrolytické kondenzátory

4.6.5 Dolaďovací kondenzátorové trimmy
Jsou tvořeny skleněnou nebo keramickou trubičkou na povrchu postříbřenou, do které se zašroubovává kovový píst tvořící druhou elektrodu. Typický rozsah kapacity je např. 0,8 – 5 pF, 1,5 – 15 pF.

4.7 Měření kondenzátorů
Pro měření kapacit se v praxi nejčastěji používají kvalitnější univerzální měřiči přístroje nebo jednoúčelové měřiče kapacity. U elektrolytických kondenzátorů se také často měří zbytkový proud, který prochází jejich elektrodami po připojení stejnosměrného napětí. Pro toto měření se využívají jednoúčelové měřiče zbytkového proudu. Je nutno zdůraznit, že zvýšený zbytkový proud u nekvalitních elektrolytických kondenzátorů je často přičinou poruch elektronických zařízení.

4.8 Cívka v elektrickém obvodu
Elektrotechnická značka:

4.8.1 Cívka ve stejnosměrném obvodu
V obvodu stálého stejnosměrného proudu se cívka projevuje pouze svým elektrickým odporem.
Kolem cívky se průchodem stejnosměrného proudu vytváří stálé magnetické pole. Magnetický indukční tok závisí přímo úměrně na indukčnosti cívky a velikosti proudu. Indukčnost cívky a tím i magnetické pole je možno zesílit vložením jádra-magnetického obvodu do cívky.

4.8.2 Cívka ve střídavém obvodu

V obvodu střídavého proudu vzniká kolem cívky proměnné magnetické pole, které v cívce indukuje elektromotorické napětí. Indukované napětí působí vždy proti změnám, které je vyvolaly (Lenzův zákon), což má za následek vznik impedance, u cívky nazývané induktance, tj. odpor cívky proti průchodu střídavého proudu. Indukance závisí přímo úměrně na indukčnosti cívky a frekvenci střídavého proudu. Cívka rovněž způsobuje fázový posuv střídavého proudu oproti střídavému napětí o π/2 neboli 1/4 peridy.

Proměnného magnetického pole kolem cívky se využívá také v transformátorech při transformaci střídavého elektrického proudu a napětí mezi dvěma obvody. Způsob a velikost transformace ovlivňuje poměr počtu závitů sekundární a primární cívky transformátoru, celková energie transformace je však také výrazně limitována celkovou velikostí a kvalitou magnetického obvodu transformátoru.

4.8.3 Cívka v kmitavém obvodu

Důležitou úlohu hraje cívka u elektromagnetického kmitání (rezonance). To vzniká v obvodu s kondenzátorem a cívkou (LC obvody), kde se periodicky opakuje přeměna elektrické energie na magnetickou a opačně. Frekvence elektromagnetického kmitání závisí mj. také na indukčnosti cívky.

4.9 Spojování cívek

Při sériovém zapojení cívek se zvětšuje celková indukčnost:

\[L = L_1 + L_2 + \ldots \]

(za předpokladu, že se cívy vzájemně nevážou, tedy nemají společný tok).

Indukčnost dvou sériově řazených cívek se vzájemnou indukčností M = L12 = L21:

\[L = L_1 + L_2 + 2M \]

(znaménko volit podle polarity vzájemné vazby).

Při paralelním zapojení se celková indukčnost zmenšuje.

4.10 Použití cívek

Cívku lze používat jako samostatnou součástku (elektromagnet, tlumivka) nebo jako součást složeného elektrického zařízení (elektromagnetické relé, transformátor, reproduktor).

Různá provedení cívek

- Cívka jako elektromagnet - využívá se magnetická síla magnetického pole kolem cívky v zařízeních jako např.:
 - elektromotor
 - zvonek
 - reproduktor
 - elektromagnetické relé
 - elektromagnetický jeřáb
Výhodou elektromagnetu je to, že magnetické pole je dočasné, dá se snadno měnit jeho velikost, příp. směr.

- **Cívka jako induktor** - využívá se elektrické napětí indukované proměnným magnetickým polem kolem cívky
 - tlumivka - cívka působí proti pes prudkým změnám v elektrickém obvodu (např. zapnutí/vypnutí obvodu, elektrický výboj, ap.). Změny v elektrickém obvodu vyvolávají změnu magnetického pole kolem cívky a následně se v cívce indukuje elektromotorické napětí působící vždy proti změnám, které je vyvolaly.
 - transformátor - obsahuje dvě cívky na společném jádře. Změnou elektrického proudu (střídavým proudem) v jedné cívce se indukuje elektrický proud v druhé cívce, dochází k transformaci proudu a napětí.
 - čtecí hlavičky v pevných discích
 - v elektromagnetických oscilačních obvodech - cívka a kondenzátor jsou nezbytné součástky pro vznik elektromagnetických kmitů v obvodu (rezonanční LC obvody).
5 Aktivní součástky

5.1 Diody

Dioda je polovodičová součástka ze dvou oblastí polovodiče: P a N. V nejběžnějším provedení slouží jako ventil — propouští proud jen jedním směrem. Existuje ale řada různých druhů, které umí i jiné věci.

5.1.1 Princip funkce

Polovodičová dioda je tvořena PN přechodem, který vzniká při kontaktu polovodiče typu P a typu N. V místě styku rekonfigurují volné elektrony polovodiče typu N s dírami polovodiče typu P. Vzniká tak oblast bez náboje a polovodič typu N se nabíjí kladně, protože v něm ubývá záporný náboj, polovodič typu P se nabíjí záporně, protože v něm ubývá kladný náboj. Mezi polovodiči vznikne napětí tzv. potenciálový val, které má směr od polovodiče typu N k polovodiči typu P. Potenciálový val způsobuje, že náboje se nemohou přes přechod P-N volně pohybovat, dokud vnějším napětím se správnou polaritou není tento val překonán.

5.1.2 Usměrňovací diody

Usměrňovací diody

Dioda propouští proud jen jedním směrem. Ve schématech se značí:
Proud teče z anody na katodu (ta je obvykle barevně označena) ne obráceně. Chování diody popisuje tzv. voltampérová charakteristika — tedy závislost protékajícího proudu na přiloženém napětí. Obrázek není v měřítku (pravá horní strana grafu je výrazně zvětšena), aby byl patrný úbytek napětí. (Pro srovnání uvádíme i dnes téměř nepoužívanou germaniovou diodu, která má sice nižší úbytek napětí, vydrží však menší závěrné napětí.) Při praktickém používání diody jsou důležité tyto parametry:

- **Prahové napětí**, což je napětí, které je třeba přiložit na diodu, aby došlo k jejímu otevření tj. aby ji mohl protékat proud. Toto napětí závisí na materiálu, např. u křemíku je 0,51 V, germania 0,28 V, u LED může dosahovat i 3 V.
- **Maximální proud v propustném směru** je maximální proud, který může diodou procházet bez jejího zničení v důsledku přehřátí. U běžných malých diod je to obvykle 0,5 A, snadno se ale seženou diody na desítky A. Někdy se místo maximálního proudu používá **výkonová ztráta**.
- **Dynamický odpor** je velikost odporu otevřené diody pro malý střídavý proud. Je dán sklonem charakteristiky v propustném směru. Bývá malý.

Prahové napětí a malý dynamický odpor v propustném směru způsobují, že na otevřené diodě je v propustném směru stálý úbytek napětí o hodnotě asi 0,7 V.

- **Maximální závěrné napětí** je maximální napětí, které dioda v opačném směru udrží, aniž by se prorazila. U běžných, křemíkových diod se pohybuje od 50 V do 1500 V. Speciální typy diod (stabilizační diody) se naopak provozují v oblasti průrazu.
- **Zbytkový proud** je proud, který prochází diodou v závěrném směru. Bývá velmi malý.

Ideální dioda by měla tyto parametry: nulové prahové napětí, nekonečný maximální proud v propustném směru, nulový dynamický odpor, nekonečně maximální závěrné napětí, nulový zbytkový proud.

5.1.3 Svítivá dioda — LED

Svítivé diody

Displeje ze svítivých diod
Seříznutá strana s "vaničkou" je katoda, tedy mínus!

Diody, které jsou schopné svítit, když jimi v propustném směru prochází malý proud, se vyrábějí v různém tvarovém i barevném provedení. Nejčastěji se dají sehnat zelené, žluté, červené a modré, dále existují bílé a vícebarevné (mají 4 nožičky — červenou, zelenou a modrou složku a katodu). Značí se takto:

\[\text{Anode} \rightarrow \text{Cathode} \]

Úbytek napětí na svítivé diodě je poměrně velký, mezi 1,5 a 4,0 V (obecně platí, že směrem od červené k zelené úbytek napětí propustném směru stoupá).

Voltampérová charakteristika LED vypadá takto:

\[I = 1 \, \text{mA} \]

\[U = 1,83 \, \text{V} \]

\[U = 1,70 \, \text{V} \]

Běžná svítivá dioda má povolený proud \(I = 20 \, \text{mA} \). Při připojení ke zdroji o napětí \(U_{\text{zdroj}} \) třeba 5 V je třeba zařadit rezistor o odporu \(R \).
Čili pro 5 V bychom použili rezistor 160 Ω.

5.1.4 Lavínová a Zenerova dioda

Výkonová Zenerova dioda

V některých případech se nám hodí velký a stabilní úbytek napětí v řádu jednotek až desítek V. Spojením dvaceti křemíkových diod v propustném směru za sebe bychom sice získali úbytek napětí 12 V, byl by ale dost závislý na změnách teploty a proudu.

Proto se vyrábějí diody, u kterých jde malým napětím způsobit nedestruktivní průraz v závěrném směru, který má dobře stanovený úbytek napětí.

Vnější funkce je patrná z následující voltampérové charakteristiky (zde pro 17 V lavínovou diodu):

V závěrném směru je velmi strmá závislost proudu na napětí: úbytek napětí v závěrném směru skoro nezávisí na proudu! Této vlastnosti se užívá např. v napěťových stabilizátořích.
5.1.5 Schottkyho dioda

Ve Schottkyho diodách nevzniká usměrňovací jev mezi dvěma druhu polovodiče, ale mezi kovem a polovodičem.

![Schottky diode diagram]

Oproti běžné křemíkové diodě se liší v tom, že má
- nižší úbytek napětí (cca 0,3 V)
- kratší dobu, než se zavře při změně směru proudu (řádově 20 ns), ale také
- větší závěrný proud a nižší povolené závěrné napětí (cca 40 V)

5.1.6 Další druhy diod

- Hrotová dioda
- Svítivá laserová dioda (perspektivní a účinný zdroj koherentního záření)
- Vysokonapěťová dioda (závěrné napětí přes 30 kV, malý proud)
- Mikrovná (Gunnova) dioda (vyzařuje mikrovlny v oblasti 10 GHz a výše, mírně laditelná, velmi citlivá na vlastnosti napájení)
- Varikap — kapacitní dioda (čili napětí laditelný kondenzátor)
- Dioda PNPN
- Tunelová dioda (s užitečným "hrbem" na voltampérové charakteristice)
- Elektronková dioda
- Fotodioda (měří intenzitu světla nebo její druhou mocninu)

5.2 Tranzistor

Tranzistor je polovodičová součástka, kterou tvoří dvojice přechodů PN. Je základem všech dnešních integrovaných obvodů, jako např. procesorů, pamětí atd.

Základní vlastností tranzistoru je schopnost zesilovat - malé změny napětí nebo proudu na vstupu mohou vyvolat velké změny napětí nebo proudu na výstupu.

Tranzistorový efekt by byl objeven a tranzistor vynalezen 16. prosince 1947 v Bellových laboratořích týmem ve složení William Shockley, John Bardeen a Walter Brattain. Za tento objev jim byla roku 1956 udělena Nobelova cena za fyziku, jednalo se o velmi významný objev, který vedl k faktickému vědeckotechnickému převratu v oblasti elektroniky, v praxi se to projevuje zejména obrovskou mírou miniaturizace jednotlivých součástek a tím i neustálým zvyšováním koncentrace polovodičových součástek přizpůsobených na jednotku plochy.

Podle principu činnosti se tranzistory dělí na bipolarní a unipolární. Polovodičové přechody tranzistoru vytvářejí strukturu odpovídající spojení dvou polovodičových diod v jedné součástce, většinu vlastností tranzistoru však dvojici diod nahradil nejčešší. Každý tranzistor má tři elektrody, které se u bipolarních tranzistorů označují jako kolektor, báze a emitor, u unipolárních jako drain, gate a source. Podle uspořádání použitých polovodičů typu P nebo N se rozlišují dva typy bipolarních tranzistorů, NPN a PNP (prostřední písmeno odpovídá bázi). Unipolární tranzistory jsou označovány jako N-FET nebo P-FET.

5.2.1 Základní typy tranzistorů

- Bipolární - (BJT - Bipolar Junction Transistor) Jsou řízeny proudem do báze.
- Unipolární (FET - Field Effect Transistor) - Jsou řízeny napětím (elektrostatickým polem) na gate.
 - JFET - (Junction FET) Řídící elektroda (gate) je tvořena závěrně polarizovaným přechodem PN.
MESFET - (Metal Semiconductor FET) Řídící elektroda (gate) je tvořena závěrně polarizovaným přechodem Kov-Polovodič.

MOSFET - (Metal Oxide Semiconductor FET) Řídící elektroda (gate) je izolována od zbytku tranzistoru.

MISFET - (Metal Insulation Semiconductor FET) Obecný název pro tranzistor s izolovanou řídící elektrodou. Izolantem nemusí být jen Oxid (Např. Nitrid...).

FET značky

5.2.2 Princip činnosti bipolárního tranzistoru

a/ VA charakteristika tranzistoru; b/ Tranzistor jako spínač; c/ Vnitřní struktura unipolárního tranzistoru
Pro snadnější pochopení činností doporučuji nejprve nastudovat PN přechod.

Bipolární tranzistor je třívrstvá součástka složená z různě dotovaných oblastí. Uvažujme tranzistor typu NPN v zapojení se společným emitorem. Zvyšováním kladného napětí mezi Bázdí a Emitorem se ztenčuje oblast bez volných nosičů na rozhraní báze a emitoru. Okolo napětí 0,6 V až 0,7 V pro křemík (Si) a 0,2 V až 0,3 V pro Germánium (Ge) začíná PN přechod báze-emitor vést elektrický proud. Tato část tranzistoru se chová jako klasická polovodičová dioda.

Emitor je na rozdíl od báze o několik řádů více dotován, má mnohem více volných nosičů náboje. V případě NPN tranzistoru elektronů, a ty zaplaví tenkou oblast báze.

Přivedením kladného napětí mezi kolektor a emitor, začnou být přebytečné elektronky odsávány z báze směrem ke kolektoru. Přechod Báze kolektor je polarizován v závěrném směru. Přebytek elektronů je následně posbírán ve vyprázdněné oblasti přechodu kolektor-báze.

Podmínky pro správnou funkci tranzistoru jsou:
- Tenká vrstva báze - Podstata tranzistorového jevu.
- Emitor dotovaný více než báze - Způsobuje převahu volných nosičů náboje z emitoru. Při otevření přechodu báze-emitor se tak zachovává délka báze a elektrony vstříknuté do báze z emitoru nestihájí rekombinovat.
- Báze dotovaná více než kolektor - Čím větší je rozdíl dotací, tím větší napětí může tranzistor spinat, ale má také větší sériový odpor.

V bipolárním tranzistoru vedou proud také díry. Ty se zákonitě pohybují opačným směrem, ale plní stejnou úlohu jako elektrony. Proto se tomuto typu tranzistoru říká "Bipolární".

5.2.3 Základní zapojení

V elektronických obvodech může být tranzistor zapojen čtyřmi základními způsoby. Podle elektrody, která je společná pro vstupní i výstupní signál se rozlišuje zapojení se:
- společným emitem (SE)
- společnou bází (SB)
- společným kolektorem (SC)
- regulací stupeň (RS)

Nejčastější zapojení tranzistoru jako zesilovače.

Ve třech následujících zapojeních přidáme k tranzistoru několik rezistorů a kondenzátorů, aby obvod sloužil jako napěťový a/nebo proudový zesilovač.

Tato zapojení slouží jako zesilovač střídavého signálu, čímž se rozumí střídavé napětí či proud (pro stejnosměrný signál má stejnosměrný proud). Znázorněno, že:
Musíme počítat s tím, že bude kladný i záporný. U tranzistoru je proto potřeba nastavit tzv. pracovní bod, tedy stav, kdy jím proudí stejnosměrný proud. Signál se pak příště či odčítá.

K oddělení stejnosměrného proudu a signálů můžeme použít kondenzátor.Ten se totiž pro stejnosměrný proud chová jako rozpojený čili tento proud jím neprojdou na rozdíl od střídavého signálu, který jím může procházet.

Protože v těchto obvodech protéká proud, i když je signál nulový, označujeme je jako zesilovače třídy A. Hojně se využívají k zesilování zvuku, v rádiích, vysílačkách, televizích atd. Více najdete v kapitole o zesilovačích.

5.2.4 Zesilovač se společným emitorem

Toto zapojení má velké proudové i napěťové zesílení. Používá se nejčastěji.

Nejdelší nastavíme tzv. pracovní bod tranzistoru. To obnáší přidat několik rezistorů:
- R1, aby protékal malý proud rezistorem do báze
(volitelně R_2 kvůli lepší stabilitě obvodu, avšak tuto funkci může alespoň částečně plnit i R_4)
R_3 aby na kolektoru byla zhruba polovina napětí zdroje
(případně R_4, aby kladl odpor vstupnímu signálu a vytvořil tak zápornou zpětnou vazbu)

Nyní protéká malý bázový proud a na řízku větší kolektorový proud. Když na vstup připojíme signál:
- Signál prochází skrz C_1 a chce projít bází na zem. Přítom se přičítá k malému bázovému proudu, který teče trvale skrz R_1.
- Při zvětšení signálu tekoucího skrz bázi tranzistor propustí větší proud na kolektoru. Vzrostou úbytek napětí na R_3, poklesne napětí na výstupu.
- Tím se zvětší napětí na R_4 a poklesne napětí na výstupu. Vzrostou napětí na R_4 ale brání bázovému proudu - takto je vytvořena zpětná vazba, která způsobí, že výsledné napěťové zesílení je poměr R_3/R_4.

Protože výstupní signál odebráme za odpor, je převrácený oproti vstupu. Třeba u zvuku to vůbec nevadí.

5.2.5 Napěťový zesilovač se společnou bází
Všechen proud výstupního signálu je tvořen proudem vstupního signálu. Toto zapojení tedy zesiluje jen napětí. Lze je použít i pro vysoké frekvence (~200 MHz).

5.2.6 Příchozí proudový zesilovač se společným kolektorem
Vstupní signál zde v klidovém stavu musí procházet rezistorem R_0. To ale znamená, že na výstupu musí být napětí o trochu menší než na vstupu! Pokud na výstupu odebráme proud, sníží se na něm napětí, umožní to větší průtok bázového proudu a ten okamžitě zvýší průtok kolektorového proudu. Tím se pokles napětí hned vyrovnaná. V tomto zapojení se nezesílí napětí, ale jen proud.
Napětí na výstupu zesilovače (emitoru) sleduje napětí na vstupu (bází). Proto se zapojení se společným kolektorem často označuje jako emitorový sledovač. Tento zesilovač je řízen jen velmi malým proudem (kerč který zesiluje).
5.2.7 Matematický popis tranzistoru

K výpočtu zesilovacího činitele (jako například h_{21E}) se používá tzv. hybridních rovnic.

$$u_1 = h_{11} i_1 + h_{12} u_2$$
$$i_2 = h_{21} i_1 + h_{22} u_2$$

Můžeme dosadit např. pro zapojení SE:

$$u_{BE} = h_{11} i_B + h_{12} u_{CE}$$
$$i_C = h_{21} i_B + h_{22} u_{CE}$$

z toho např. h_{11}:

$$h_{11} = \frac{u_{BE}}{i_B} \text{ při } u_{CE} = 0, \Rightarrow U_{CE} = \text{konst.}$$

Stejně tak platí vztah $i_C = i_B$. Ten platí vždy a to v jakémkoli zapojení.

$$h_{11} = \text{Diferenciální vstupní odpor při výstupu nakrátko.}$$
$$h_{12} = \text{Diferenciální zpětný napěťový přenos při vstupu naprázdno.}$$
$$h_{21} = \text{Diferenciální proudový přenos při výstupu nakrátko. (někdy uváděn jako } h_{FE} \text{ nebo } \beta)$$
$$h_{22} = \text{Diferenciální výstupní vodivost při vstupu naprázdno.}$$

Můžeme také počítat s Admitančními rovnicemi:

$$i_1 = y_{11} u_1 + y_{12} u_2$$
$$i_2 = y_{21} u_1 + y_{22} u_2$$

Poznámka: všimněte si malých a velkých písmen, neboť velká jsou statické hodnoty a malá jsou dynamické – tzn. že velká písmena vyjadřují chování v ustáleném stavu při stejnosměrných veličinách, kdežto malá písmena určují chování (okamžité hodnoty) při střídavých veličinách. Je nutné brát toto v potaz!

5.2.8 Rozdělení tranzistorů podle výkonu

- **běžné tranzistory** - slouží pro zpracování signálu (ať už jako jednotlivé "diskrétní" součástky, či součástky v čipech a mikročipech integrovaných obvodů), jsou dnes základním prvkem spotřební a nespotřební elektroniky (televize, rádia, počítače, mobilní telefony, ...)
- **výkonové tranzistory** - jsou klíčovým prvkem používaným ve výkonové elektronice, například v oblasti spínacích zdrojů nebo frekvenčních měničů. Výkonová elektronika je rovněž klíčová při realizaci moderních zdrojů světla (úsporná žárovka, LED dioda, moderních trakčních vozidel s asynchronními motory, hybridních automobilů a elektromobilů, fotovoltaických a větrných elektráren).

Běžné tranzistory obvykle zpracovávají signál v jednotkách voltů. Proud přítom bývá nejvýše v řádu několika miliampérů. Současně výkonové tranzistory (viz. IGBT) jsou schopny ve spínacím režimu pracovat s napětím až v řádu kilovoltů a s proudy v řádu stovek nebo tisíců ampér. Mezi běžnými a výkonovými tranzistory je oblast středně výkonných tranzistorů provozovaných v lineárním režimu, používaných například pro lineární regulátory napětí, nebo pro výkonové stupně audiozesilovačů.

5.3 **Tyristor, diak, triak.**

Elektronické součástky, které se pod těmito názvy skrývají, byly vyvinuty ke spínacím účelům a používají se hlavně pro účely tzv. bezeztrátové regulace výkonu. Znáte jistě vypínače s kolečkem,
kterým se může měnit intenzita světla spínané žárovky, vrtačky s regulací otáček, slyšeli jste o tom, že v tramvajích a elektrických lokomotivách se používá tyristorová regulace výkonu, že existují oblovková svářecí zařízení s tyristorovou regulací apod. Co to vůbec je bezeztrátová regulace? Vysvětluji si tento pojem na příkladu stmivače žárovky. Chceme-li, aby žárovka svítila méně, pak můžeme použít zdroje o nižším napětí; to však není případ, se kterým se setkáváme v praxi nejčastěji. Obvykle máme zdroj napětí, např. zásuvku, jehož napětí je konstantní. Pak máme možnost zapojit do série se žárovkou odporník, na kterém se vytvoří spád napětí a o toto napětí bude napětí na žárovce nižší. Pak ale na odporu bude vznikat Jouleovo teplo \(U^2/R \), které je obvykle zbytečné a jen zvýšuje spotřebu energie (u starých tramvají se teplo zvznikající zařazováním odporu před motor při rozjíždění využívalo k vytápění vozů). Vzpomněli-li si na definici efektivní hodnoty napětí jako odmocniny ze střední hodnoty kvadrátu napětí přes periodu, pak tuto efektivní hodnotu lze snížit i tak, že po určitou část periody necháme napětí na žárovce rovno nule a jen po zbytek periody jej k žárovce připojíme bez sériového odporu. Vzhledem k tepelné setrvačnosti vlákna svítí žárovka tak, jak to odpovídá střední hodnotě výkonu přes periodu a tak dosáhne stejného účinku. (Ve skutečnosti zářivý výkon ze žárovky kolísá v rytmu jejího zapínání a vypínání a "zařízení", které středování provádí, je našo oko; podobně jako v kině při promítání filmu.) Sériový odpor spinače je přítom buď roven nekonečnu nebo nule podle toho, je-li spinač rozepnut nebo sepnut. Je-li rozepnut, je na něm výkon nulový protože jím prochází nulový proud (\(RI^2 \)), je-li sepnutý, je na něm výkon nulový protože je na něm nulové napětí (\(U^2/R \)). Dosáhli jsme tedy snížení efektivní hodnoty napětí a přitom výkonová ztráta na regulačním prvku byla nulová - to je bezeztrátová regulace výkonu, v našem případě napětí na žárovce.

Tak jako vždy, když řekneme příliš silný výrok, v našem případě bezeztrátová regulace, je realita daleko od pravdy; lépe by bylo říci regulace s mnohem menšími ztrátami ve srovnání s předřadným odporom. Kde jsou tedy ztráty výkonu u "bezeztrátové" regulace? Předně žádný spinač nesnáší ani nerozepnána nulový čas. Znamená to, že spinač je po určitou dobu odporem reálně ne nulové ani ne nekonečné hodnoty a tedy se na něm ztrácí výkon úmerný době, po kterou v tomto stavu je. Za druhé, mění-li se rychle proud v obvodu, obsahuje jeho Fourierův rozvoj nenulové komponenty s velmi vysokými kmitočty, které se vodiči v obvodu vyzařují jako anténu. To jsou další ztráty výkonu a navíc vyzařování může způsobit vážné poruchy v příjmu rozhlasu a televize a v komunikacích. Zmenšení vyzařování lze provést jen na účet rychlosti spínání a to jde proti požadavku na rychlost spínacích. Prakticky lze říci, že polovodičové tyristorové nebo triakové spinače jsou tak rychlé, že se spínací a rozpínací hrany musí "zpomalovat" pomocí dolnopropustných filtrů, které "odříznou" vysokofrekvenční komponenty a omezi tak vyzařování na minimum.

Podívejme se nyní na základní spínací prvek a tím je tyristor. Je čtyřvrstvý spínací prvek, tj. prvek obsahující tři přechody PNPN. Můžeme si jej představit jako dva bipolární tranzistory, jeden PNP a druhý NPN, zapojené na následujícím obrázku.
Emitor tranzistoru PNP je přiložen na kladný pól zdroje napětí, emitor tranzistoru NPN na záporný pól, do řídící elektrody G tyristoru nechť teče proud I_G. Podle 1. Kirchhoffova zákona o proudech v uzlu musí platit
\[I_2 = I_G + I_1 \]

a také, uvážíme-li, že \(\alpha_1 I_1 \) je kolektorový proud PNP tranzistoru a \(\alpha_2 I_2 \) kolektorový proud NPN tranzistoru (emitorový proud je \(I_2 \)), musí být \(I_2 = \alpha_1 I_1 + \alpha_2 I_2 \) (zanedbával jsme zbytkové proudy a \(I_G \) vůči \(\alpha_1 I_1 \)). Z těchto dvou rovnic pak máme pro \(I_2 \) výraz
\[I_2 = -\alpha_1 I_G / (1 - (\alpha_1 + \alpha_2)) \]

Pokud je součet proudových zesílení \(\alpha_1 + \alpha_2 \) přibližně roven jedné, může být proud \(I_2 \) velmi veliký i když proud řídící elektrody \(I_G \) je velmi malý. Jako proud \(I_G \) může fungovat i závěrný proud kolektorové diody PNP tranzistoru, který, jak víme, může při překročení mezního dovoleného kolektorového napětí vzrůst lavinovitým průrazem kolektorového přechodu. Jakmile je jednou tyristor ve vodivém stavu, zůstává ve vodivém stavu tak dlouho, dokud se proud \(I_2 \) nesníží pod určitou hodnotu, neboť tranzistory se vzájemně podporují v otevřeném stavu - sepnutým tranzistorem NPN teče záporný proud do báze tranzistoru PNP a opačně sepnutým tranzistorem PNP teče proud do báze tranzistoru NPN. Rozpojíme-li obvod, vrátí se za určitou krátkou dobu (řádově 100 ns) tyristor do výchozího stavu, ze kterého jej můžeme opět sepnout. Totéž se stane, zmenšíme-li proud tyristorem neúplně na nulu, ale pod hodnotu tzv. přídržného proudu \(I_H \), který je parametrem daného typu tyristoru. Funkci tyristoru bychom si mohli představit jako funkci stykače, který by měl jedno vinutí příděrné cívky zapojené do série se spínaným hlavním obvodem a navíc by měla cívka stykače ještě jedno vinutí navíc vinutí tenkým drátem s mnoha závity. Stykač se sepně zavedením malého proudu do tohoto pomocného vinutí, a pak proud hlavním obvodem udržuje stykač sepnutý; zmenšíme-li tento proud pod určitě minimum, pak kotva stykače otpadá a hlavní obvod se rozpojí. Analogie se stykačem pokuhlívá v rychlosti spínání; zatímco spínací doba tyristoru je v řádu stovek ns, u stykače jsou to desítky milisekund.
Charakteristika tyristoru

Je zajímavá tím, že křivka charakteristiky není spojitá, ale vykazuje nespojitost, odpovídající zápornému diferenciálnímu odporu. Průběh charakteristiky pro nulový proud řídící elektrodou lze popsat takto: zvýšujeme-li napětí na tyristoru, teče jím nejprve jen závěrný proud; koeficienty proudového zesílení α₁ a α₂ jsou malé a proto jmenovatel naší rovnice pro I₂ je jen o málo menší než 1. (Uvědomme si, že koeficient proudového zesílení tranzistoru není konstanta, závisí např. na emitorovém proudě; je-li emitorový proud malý je transport nosičů přes bázi tranzistoru řízen výlučně difúzí a rekombinace v bázi je velká; zvětšíme-li proud emitoru, vytvoříme v blízkosti přechodu emitor-báze přebytek nosičů a tím vytvoříme i elektrické pole, které pomáhá přenesu nosičů přes bázi => rekombinace je menší a koeficient proudového zesílení bližší jedničce.) Zvyšováním napětí mezi anodou (emitor PNP tranzistoru) a katodou (emitor NPN tranzistoru) tyristoru se proud tyristorem mění jen velmi malo až dojde ke napětí, kdy dochází k lavinovitému průrazu kolektorového přechodu tranzistoru PNP. Tím dojde ke zvýšení obou koeficientů proudového zesílení α₁ i α₂ a jmenovatel naší rovnice se začne blížit nule za současného proudu I₀ (závěrný proud kolektorového přechodu I₁, de facto reprezentuje proud I₀₁). Tyristor se sepne a zůstane sepnutý, dokud I₁=I₂ neklesne pod hodnotu I₀₁. Po dobu sepnutí je napětí na tyristoru velmi malé, řádově jeden až několik voltů podle velikosti procházejícího proudu. Tyristor se chová jako malý odpor - to je část charakteristiky bližší ose pořadnic, která rychle s napětím roste. Protože při sepnutí tyristoru dojde k lavinovitému průrazu kolektorového přechodu, není tento průraz pro tyristor nijak nebezpečný.

Teče-li do řídící elektrody proud, je situace velmi obdobná, pouze není nutné dojít k lavinovitému průrazu kolektorového přechodu tranzistoru, neboť I₀₁ v našem vztahu není rovnovážné a tím dojde k těžišení napětí při nižší napětí než v předcházejícím případě. Nebo naopak, je-li na tyristoru napětí menší, než je napětí pro sepnutí tyristoru s nulovým proudem I₀₁, můžeme tyristor sepnout krátkým proudovým impulsem do řídící elektrody; to je nejbežnější způsob spínání tyristoru.

Tyristor může též sepnout při napětí podstatně nižší, než je spínací napětí s nulovým proudem I₀₁ tehdy, když napětí na tyristoru rychle roste. Tehdy se uplatňují kapacity přechodů a jako proud I₀₁ "zafunguje" proud přes kapacitu přechodů, který sepně tyristor. Tento většinou parazitní efekt je možné odstranit pouze omezením rychlosti vzrůstu napětí na tyristoru; např. vhodným filtrem.
Jak již bylo řečeno, používá se tyristor pro bezeztrátovou regulaci výkonu. Jeho použití je zejména vhodné v obvodech střídavého napětí, neboť každý průchod napětí nulou automaticky vypne tyristor a ten čeká na další zapnutí. Jedná se o způsob bezprostředního zapínání a vypínání, které se velmi často používá v obvodech střídavého napětí. Tyristor je určen zejména pro střídavé napětí.

Pomalou vznikající napětí na řídicí elektrodě tyristoru může vést k jeho zapínání v nezcela přesně určený časový okamžik; proto je vhodné zařízení pro řízení třídu tyristoru s jemně změnitelnou časovou konstantou RC například pomocí proměnného odporu, viz. obrázek niže.

Je-li odpor nastaven na nulu, spíná se tyristor prakticky okamžitě po průchodu napětí nulou, je-li odpor nastaven větší, pak se tyristor zapne až po průchodu napětí nulou v určitou časovou délku, což umožňuje jemnější regulaci výkonu.

Jistě jste si všimli, že tyristor nespíná v obou polaritách; rozlišuje se anoda a katoda tyristoru. Je-li na katodě napětí a na anodě záporné napětí, teče tyristorem jen závěrný proud a nelze jej sepnout elektronicky.

Tyristor se vyrábí pro napětí od stovek voltů do několika kV a pro proudy od jednotek A do několika kA. Je možné je použít i pro spánění stejnosměrých obvodů; pak je nutné se postarat o vypínání tyristoru speciálním obvodem, který, například, spíná kondenzátor k anodě tyristoru na chvíli "převztává" proud k zdroji a tyristor se nezřídka vypne klesáním proudu pod určitou hodnotu I_H. Oproti tomu pro obvody střídavého napětí, kde je konstrukče třídu, méně se výkon změnu šifry aktivní části obvodu, tj. části obvodu, po kterou je zářivka připojena ke zdroji.
Pro relativně malé výkony, tj. pro napětí typická v rozvodné síti a proudy do několika ampér byly vyvinuty vícevrstvé prvky, které pracují stejně jako dva antiparalelně zapojené tyristory s tím rozdílem, že mají jen jednu řídící elektrodu; říká se jim triak. Zatímco tyristory byly vyrobeny pro řízení výkonů až do řádu megawattů, triaky vzhledem ke své složitější struktuře a tím větší náchylnosti na průraz zůstávají doménou pro regulaci intenzity domácího osvětlení, otáček vrtaček, vysavačů a podobných nízkovýkonových elektrických spotřebičů; jejich výhoda tkví v jednoduchosti zapojení.

Pro fázové řízení triáků a tyristorů byly vyvinuty integrované obvody, které umožňují "lineární" řízení fáze spuštění. V každé půlperiodě "vyrobi" lineárně vzrůstající pilovité napětí a tyristor se sepne v okamžiku, kdy se toto napětí vyrovnaná konstantnímu napětí řízenému zvnějšku potenciometrem. Fáze sepnutí je tedy přímo úměrná úhlu otočení potenciometru (za předpokladu, že se jedná o potenciometr s lineárním průběhem odporu). Tyto integrované obvody jsou napájeny přímo ze sítě a tak pro konstrukci např. regulátoru otáček vysavače stačí triak, tento integrovaný obvod, potenciometr a několik málo dalších součástek.

Dříve, než opustíme tuto kapitolu o spínacích polovodičových prvcích je třeba si zdůraznit potřebu odrušení těchto regulátorů. Existuje řada amatérských konstrukcí těchto regulátorů, které sice bezchybně fungují, ale "zamořují" ovzdvůní širokým spektrum vyzařovaných kmitočtů. Možná se vzpomínáte, že když měl soused špatně odrušený mixer nebo vysavač, pak, když tento spotřebič používal, nešlo se dívat na televizí ani poslouchat rádio. V tomto případě šlo o šíření těchto rušivých kmitočtů přímo do rozvodné sítě, v případě špatně odrušeného např. zapalování u motorů, se jedná o přenos vzduchem. Z tohoto důvodu všechny potenciometry, které mohou potenciálně vyzařovat energii, jsou podrobeny v rámci schvalování každým státem přísné kontrole na tak zvanou elektromagnetickou kompatibilitu, EMC (Electro-Magnetic-Compatibility). Jedná se jak o úroveň vyzařování, tak o citlivost na tyto rušivé vlivy; neradí bychom třeba letěli v letadle, jehož navigační systém by mohl být ovlivněn tím, že v blízkosti letiště jezdí tyristorové řízené tramvaje. EMC se stává čím dál víc součástí ekologického nahlížení na svět okolo nás a proto bychom měli i my přispět alespoň tím, že nebudeme neodrušené nebo špatně odrušené výrobky používat.
6 Plošné spoje

Plošný spoj (také deska plošných spojů, zkráceně DPS, v angličtině PCB) se v elektronice používá pro mechanické připevnění a současně pro elektrické propojení elektronických součástek. Součástky jsou propojeny vodivými cestami vytvořenými leptáním z měděných folií nalepených na izolační laminátové desce, nejčastěji typu FR4 (skelný laminát, plátovaný měděnou folii). Samotné součástky jsou na DPS připájeny za své vývody cínovou pájkou. Klasická provedení součástek mají vývody ve formě drátů nebo količků. Ty se obvykle prostří tvory v DPS a na opačné straně, než byla součástka se připájely k spojům, vytvořených vrstvou mědi. V současnosti se při sériové výrobě používá velmi často technologie povrchové montáže (surface-mount technology, SMT). Součástky pro povrchovou montáž (surface-mount device, SMD) mají na svém povrchu kontaktní plošky, za které se připájají na stejnou stranu DPS, na které jsou osazeny. To umožní i osazení desek součástkami z obou stran.

Desky plošných spojí v dnešní době umožňují výrobu levných a přitom dostatečně robustních elektronických zařízení.

Protože současné součástky mají desítky i stovky vývodů, nebylo by jeho možné dobře propojit na jednoduché desce plošných spojů. Proto byly vyvinuty oboustranné DPS, které mají vodivý obrazec z obou stran a následně vícevrstvé DPS. Úprava DPS vznikají slepením několika tenkých oboustranných DPS. U dvou- nebo vícevrstvých DPS se musí prokovovat průchody mezi vrstvami. DPS se běžně opatrují nepájivou maskou. To je polopoušťová izolační vrstva typicky čidlinové barvy. Nechává odkryty jen pájecí plošky, zbytek vodivých cest zakrývá a zlepšuje tak izolační vlastnosti desky, současně brání ponožení vodivých cest. Pro orientaci při kontrole, opravách nebo nastavování se na nepájivou masku často tisknou servisní potisk. Vyznačuje umístění součástek a jejich označení dle elektrického schematu.

Protože ruční návrh plošných spojů by byl v složitějších obvodech extrémně časově náročný, přičemž by snadno mohlo docházet k chybě, pak se používá CAE, usnadňující vývoj. CaC, usnadňující vývoj. Vývoj vytvoří schéma zapojení ze kterého se vygeneruje seznam spojů (netlist). Jiný program (autorouter) může na základě tohoto netlistu vytvořit předlohu pro výrobu DPS.

6.1 Základní materiál pro výrobu DPS

Základním materiálem pro výrobu DPS je nejčastěji laminát ze skelné tkaniny sycený epoxidovou pryskyřicí. Z jedné nebo obou stran je nalepena měděná folie. Epoxidová pryskyřice má jemně nažloutlou (medovou) barvu. Tloušťka laminátu je běžně 1 až 1,5mm, tloušťka měděné folie 17 nebo 35 mikrometrů, pro náročnější účely se používají i další tloušťky. Tento materiál, bez ohledu na skutečného výrobce je v ČR známý pod názvem "CUPREXTIT". Byl obchodní název materiálu vyrobeného podnikem KABLO Bratislava, závod GUMON. Obdobný materiál, vyrobený v ČR se jmenoval UMATEX, později LAMPLEX. Materiály pro výrobu DPS existují v mnoha různých provedeních. Tloušťka laminátu může být od 0,8 mm do 2 mm. Složení nemusí být vždy skelná tkanina v epoxidu. Pro jednodušší obvody (jako je spotřební elektronika) existují lamináty se silnější stříbrem, které mají nižší hmotnost a výroba je snazší. Pro vysokofrekvenční obvody se užívají lamináty na bázi teflonu. Tloušťka měděné folie je odvozena z její hmotnosti v amerických mírach. Podle této hmotnosti se také kyslí tloušťka označovala: 17 mikrometrů je tzv jednoucová měď (jedna čtvereční stopa váže jednu unci) 35 mikrometrů je dvouuncová měď.
6.2 Označení materiálů pro plošné spoje:
- **FR1** Papír nasycený fenolovou pryskyřicí - laciný druh
- **FR2** Papír nasycený fenolovou pryskyřicí - standardní provedení
- **FR3** Papír nasycený epoxidovou pryskyřicí
- **FR4** Tkanina ze skelných vláken syčená epoxidovou pryskyřicí - nejběžnější druh
- **FR5** Tkanina ze skelných vláken syčená epoxidovou pryskyřicí - zvláště tepelně odolný druh

6.3 Výroba desek plošných spojů
Základní kroky při výrobě plošných spojů jsou:
- Vyvrtání otvorů
- Očištění povrchu měděné folie odmaštěním a obroušením
- Zakrytí motivu plošného spoje (vodivých cest a plošek, které mají na plošném spoji zůstat) leptuvzdornou vrstvou
 - V amatérských podmínkách se k zakrytí motivu plošného spoje používají rychleschnoucí laky nanášené ručně. Existují i přípravené přípravky základního materiálu pokryté světlocitlivou vrstvou, ale v amatérských podmínkách bývá problém s dostatečným osvětlením.
 - Odstranění leptuvzdorné vrstvy
- Nanesení krycích a ochranných vrstev
- Mechanické opracování desky do výsledného tvaru
 - Frézováním se zhotovují kruhové otvory o průměru nejmenším 6mm a nekruhové otvory a výřezy. Provádí se většinou na stejném stroji (souřadnicové vrtací stroje) a při stejném upnutí jako vrtání. U jednostranných plošných spojů se otvory dříve zhotovovaly vysítkováním na výšetřítkových lisech. Vzhledem k nákladům na zhotovení razítek a nebezpečí poškození povrchu se od této metody upustilo.
 - Řezáním kotoučovou pilou se docílí přesnějšího opracování rovných hran.
 - Drážkováním se dělí desky menších rozměrů, které se mají hromadně osazovat. Princip této techniky je v proříznutí úzké drážky do spodní i horní strany desky protiležnými kotouči. Ponechá se pouze tenká spojovací vrstva. Osazené, zapájené a někdy i oživené desky se rozlámou jako tabulka čokolády.

Běžně se pro snížení ceny kombinuje frézování složitých tvarů s některou jednoduší technologií zhotovení rovných řezů.
7 Výroba plošného spoje

- Vytvarování a částečné zkrácení vývodů
- Osazení součástek do otvorů v plošném spoji
- Zajištění vývodů zahnutím na straně pájení a zkrácení na správnou délku
- Zapájení vývodů
- Kontrola a oživení osazené desky
- Doplnění a výměna chybějících a vadných součástek
- Vyčištění desky od zbytků tavidla a stop zanechalých pracovníků při montáži
- Povrchová ochrana desky nástřikem ochranného laku

Odpr osazený do otvorů v DPS

Ručně zapálený plošný spoj

Plošný spoj osazený součástkami s drátovými vývody
8 Výroba plošných spojů

8.1 Zábavná elektronika
Na základě vlastního výběru

8.2 Klopné obvody
Astabilní, bistabilní, monostabilní.