

Předmět:	Ročník:	Vytvořil:	Datum:	
CAD	druhý, třetí	Petr Machanec	21.6.2012	
Název zpracovaného celku:				
CAD_Inventor - cvičení k modelování a tvorbě technické obrazové dokumentace				
Modelování rotační součásti - řemenice				

Modelování rotační součásti - řemenice

Pro ukázku modelování tohoto typu součásti byla zvolena řemenice. Budeme popisovat postup modelování této rotační součásti. Ukážeme si všechny základní i alternativní příkazy a postupy. Při řešení úlohy budeme vycházet z rozměrů již hotového 2D výkresu dané součásti. Budeme předpokládat elementární znalosti programu při vytváření náčrtů a modelu (entita, parametrická kóta, vazba, vysunutí, atd.)

Výsledný model

2D výkres součásti

Před vytvořením nového souboru formátu "ipt" je vhodné nastavit prostředí náčrtu. Na obr.1 je doporučené nastavení.

	Možnosti aplikace	slovo nebo výraz. 🕅 - 🔧 🗴 😧 - 💶 🗉 🛋
PRO Začínáme Nástroje	Obecné Uložit Soubor Barvy Zobrazení Hardware Výzvy Výkres Zápi:	anik
Přizpůsobit 🎯 Makra	Náčrt Součást iPrvek Sestava Obsahové centrum	
Možnosti Nastavení Propojeni 🖉 Editor VBA Editor Dávka	2D náčrt	
aplikace dokumentu "u" Dopinky Možnosti 💌 Obsahov	Rovnohěžná a kolmá Čárv rastru	
	O Horizontální a vertikální	
Žádný prohlížeč 👻 🙎	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
	Překótované rozměry Indikátor souřadného systému	
	Použít řízené kóty Zobrazit totožné vazby při vytváření	
	Upozornit na překótovaný stav Omezení a stupně volnosti	
	něřítko značek	
	Metoda interpolace spline Průhledový displej	
	O AutoCAD Nastavení	
	Minimální energie – výchozí napětí	
	0	
	0 100	
	Džichušti k rastru	
	Automaticky promítat hrany při vytváření křivky	
	🕼 Automaticky promítat hrany při vytváření a úpravě náčrtu	
	Pohled na náčrtovou rovinu při vytváření náčrtu	
	Automaticky promítat počátek součásti při vytváření náčrtu	Х
	Zarovnání bodu	es se s
	30 náčrt	ğ
Autodesk	Automatický ohyb s tvorbou 3D čáry	<u>و</u>
Drofossion		obr.1
Professiona		
Pro nápovědu stiskněte F1	Importovat Exportovat Zavřít Storno Použ	ît 0 0

Zvolení vhodného modelovacího postupu

Samozřejmě existuje více možností, jak dosáhnout výsledného modelu. Jelikož se jedná o rotační součást, použijeme pro vymodelování funkci rotace. V případě modelování řemenice je potřeba klást důraz na náčrt drážky.

Náčrt

Dle zadání vytvoříme "od ruky" náčrt profilu části řemenice s libovolnými rozměry. Náčrt vytváříme pomocí příkazu <u>Čára</u> z počátku souřadného systému. Využíváme geometrické vazby, které se automaticky objevují při vytváření náčrtu, popř. příslušnou vazbu přiřadíme konkrétní entitě.

Je vhodné zvolit <u>vhodnou entitu</u> a změnit její formát jako <u>konstrukční osu</u>, která poslouží jako osa rotace vytvářeného tělesa. – obr.2

Nejproblematičtější částí náčrtu bude jistě vytvoření profilu drážky. Nejdříve zakótujeme hlavní průměry. Potom s výhodou použijeme vazbu <u>Kolineární</u> pro úpravu výšky drážky(obr.3). Dále si vytvoříme pomocnou čáru ze středu spodní části profilu drážky a přiřadíme

jí formát Konstrukční.(obr.4) Na stěny profilu drážky aplikujeme vazbu <u>Symetrické</u>, přičemž osou symetrie bude právě vytvolená <u>pomocná</u> <u>konstrukční čára</u>.(obr.4) Symetrii drážky lze samozřejmě zajistit i jinými způsoby, např. parametrickou kótou úhlu – (34°a17°)

Parametricky zakótujeme úhel drážky - 34°. Abychom docílili daného výpočtového průměru řemenice(111 mm) a dané výpočtové šířky drážky(14 mm), vytvoříme <u>pomocnou konstrukční čáru</u>, která musí mít <u>Totožnou vazbu</u> s profilem drážky, svírajícím úhel 34°.(Pokud se Totožná vazba nevytvoří automaticky, musí se přídat na entitu z pásu karet). Jestliže potom zakótujeme délku pomocné konstrukční čáry parametrickou kótou 14mm a průměr téže čáry 111mm, profil drážky se správně zformuje. Pro správný rozměr doplníme ještě kótu 12,5 mm – k tomu využijeme svislou konstrukční čáru.

Pro vytvoření náčrtu druhé drážky můžeme použít funkci Zrcadlení.

Pro tento příkaz potřebujeme osu zrcadlení, kterou vytvoříme jako <u>konstrukční čáru</u> a bude ve středu os obou drážek(19mm/2). Vybrané entity pro zrcadlení jsou červeně zvýrazněny. – obr.6.

Můžeme použít příkaz <u>Prodloužit</u>, pro prodloužení nedokočené entity během příkazu zrcadlení (obr.7) Dále dokončíme náčrt řemerice(musí tvořit uzavřenou křivku), správně zavazbíme a parametricky zakótujeme – obr.8. Pokud to není nutné, všechna zkosení a zaoblení vytváříme až v modelu, protože jákákoliv dodatečná úprava zkosení nebo zaoblení se mnohem snadněji provádí v prostředí modelu.

Modelování

Po vytvoření základního náčrtu (viz obr.8) přejdeme do prostředí modelování příkazem <u>Dokončit náčrt</u> na pravé straně v pásu karet (resp.pravým tl.myši a v místní nabídce – Dokončit náčrt). Příkazem Rotace vytvoříme základ tělesa. Pokud je v náčrtu pouze jeden profil pro rotaci a náčrt je bezchybný, po výběru příkazu <u>Rotace</u> se vytvoří náhled hřídele s dialogem. V tomto dialogu je možno měnit pouze meze rotace – ponecháme možnost <u>Plný</u> (úhel). - obr.9

Potvrdíme návrh rotace – těleso se vytvoří. Je dobré si všímat prohlížeče součástí, kde se formuje stromová struktura historie modelování součásti. – obr.10

V tomto prohlížeči je rovněž možno editovat jednotlivé příkazy i příslušné náčrty, jakož i jejich parametry.

Díra

Pro vytvoření díry je možno použít příkazu <u>Díra</u>. Umístění díry volíme <u>Soustředná</u>. Vybereme základní rovinu, <u>Soustřednou referenci</u> a definujeme parametry díry. S výhodou můžeme zvolit typ díry <u>S válcovým</u> <u>zahloubením</u> a vytvořit tím v podstatě dvě díry v jednom příkazu – obr.11

Vytvoření drážky

K vytvoření drážky pro pero vyrobíme nový náčrt na <u>vhodné rovině</u>. (obr.12) Na promítnutou vnitřní hranu náčrtu vytvoříme obdélník, který představuje profil naší drážky. Vyrobíme ho příkazem <u>Obdélník dvěma body</u> Přitom <u>výchozí bod obdélníku</u> volíme přímo na zmíněnou promítnutou hranu. Díky tomu má spodní strana obdélníku totožnou vazbu s touto hranou. Správně zakótujeme - viz obr.13.

 Image: Second second

ə 🍾 🗘 =

d26 = 24,5 mm

Vazhv 🔻

🕅 🔿 Otoč

obr.13

Po vytvoření náčrtu drážky(viz obr.13) přejdeme do prostředí modelování příkazem <u>Dokončit náčrt</u> na pravé straně v pásu karet (resp.pravým tl.myši a v místní nabídce–Dokončit náčrt –obr.14) Pro vytvoření drážky použijeme příkaz Vysunutí a zvolíme <u>logický rozdíl</u>. Vymezení vysunutí volíme <u>Vše</u> – čímž se odřízne načrtnutý profil přes celé těleso. obr.14

Drážka je vytvořena a model řemenice je téměř hotov, zbývá ještě srazit a zaoblit příslušné hrany - podle zadání. - obr.15

Zkosení

Všechna zkosení na tělese jsou pod úhlem 45°. Použijeme tedy funkci Zkosit a typ zkosení vybereme Vzdálenost. V tomto typu zkosení je automaticky nastaven úhel 45° V dialogu nejprve můžeme zadat vzdálenost zkosení - 1 (1x45°) a vybrat všechny hrany s tímto zkosením (obr.16).

Podobně – podle zadání – provedeme i zkosení 2x45°.

Zaoblení

Zoablení hran provedeme příkazem <u>Zaoblit</u>. V jednom příkaze lze zaoblit všechny hrany stejných poloměrů, ale i hrany s poloměry jiných/hodnot.

Zvolíme tedy pro tuto hodnotu poloměru samostatný příkaz.a zaoblíme hrany drážky poloměrem 0,4mm– Výběr požadované hrany k zaoblení(zkosení) lze provést ikdyž tato není přímo viditelná. Není tedy nutné vždy natáčet model. Obr.17

Pro další hodnoty poloměrů použijeme pouze jeden příkaz Zaoblit.

V dialogu zadáme hodnotu <u>poloměru(2mm)</u> a vybereme příslušné hrany na modelu. Potom klikneme na text <u>Klepněte pro přidání</u> a zadáme další hodnotu <u>poloměru(1,6mm)</u> a opět vybereme příslušné hrany. Ne vždy je ovšem tato metoda vhodná,protože se zadané hodnoty poloměrů později špatně editují.obr.18.

Model řemenice podle zadání je hotov - obr.19

Fyzikální vlastnosti

Modelu můžeme ještě přiřadit materiál ve fyzikálních vlastnostech. Přiřazení materiálu je nutné v případě výpočtu hmotnosti, nebo pro simulaci napěťových stavů.

Rozevřeme ikonu pro práci se souborem a vybereme volbu iVlastnosti - obr.20

V následujícím dialogu vybereme kartu <u>Fyzikální</u> a zvolíme požadovaný materiál. Program vypočte <u>hmotnost</u>, povrch, objem a další fyzikální veličiny tělesa. - obr.21

Ke tvorbě tohoto cvičení byl použit program Autodesk Inventor 2013, jehož licenci legálně vlastní SPŠ Ostrava-Vítkovice.