

Předmět:	Ročník:	Vytvořil:	Datum:
ΙΚΤ	první, druhý,	Petr Machanec	25.6.2013
Název zpracovaného celku:			
CAD_AutoCAD-Mechanical -cvičení k tvorbě technické obrazové dokumentace Vidlice kardanu			

Vidlice kardanu

Pro ukázku vytváření 2D výkresu byl zvolen model vidlice kardanu, což je funkční díl rozsáhlejšího celku sestavy strojního zařízení. Budeme předpokládat elementární znalosti zásad technického kreslení a ovládání programu AutoCAD-Mechanical.

Výsledný výkres

Nastavení normy

Před začátkem je vhodné přizpůsobit nastavení aplikace AutoCAD-Mechanical. V dialogu Možnosti je možno-nastavit a definovat uživatelské nastavení, profily, normy a mnoho dalších

Na kartě AM Normy je potřeba ověřit, popř. nastavit správnou normu. Pokud je nainstalována, použijeme normu ČSN. V opačném případě normu ISO. . Obr.2

Prototypový výkres

Použijeme šablonu, která je již vytvořena a obsahuje rámečky s razítkem, nastavený kótovací styl a přidané hladiny. Obr.3

Po zvolení odpovídajícího formátu je vhodné soubor uložit pod správným názvem. Podle zadání můžeme použít pro vytvoření prvního pohledu příkaz obdélník. Pro efektivní práci v AtodeskMechanical je vhodné používat více konstrukčních metod. V našem případě bychom mohli použít příkaz Obdélník, Rozložení entit, Ořezávání a Konstrukční čáry. Jednotlivé hodnoty stran obdélníka zadáváme v pořadí: x-souřadnice, tabelátor, y-souřadnice. Obr.4

D:\Výkresv\ Projekt Moderní ...\ vidlice karo Správa Výstup Moduly plug-in Online
Image: ß G ి 5 А Konstrukční čáry _A . 101± **n**, -F\$ Úsečka Křivka Kružnice Oblouk Vložit Dělit v měřítku Schrán eřádk text ový _ -۰ 🗵 4**x** -13 -망 . Blok T Konstrukce 🔻 Detail 🔻 Pomůcky v Kreslit 🔻 Modifikace -Poznámka Skupiny -–][Horní][2D drátový m ΠX 50 🗂 obr.4 uji +, ≝ ⊞ ⊢ _ ĕ 🗋 💭 ∠ 🖄 📥 🖡 🛽 Ö 🗗 📫 関

3

Nárys

Po vytvoření obdélníka daných rozměrů je v některých případech nezbytné jeho rozložení. To je i v našem případě, abychom mohli následně použít s výhodou příkaz Ekvidistanta. Pozor-příkaz Rozložit je nevratný. Složit objekt lze již jen bezprostředně Krokem zpět obr.5

Ekvidistanty

V dalším kroku použijeme již zmíněný příkaz Ekvidistanta. V příkazovém řádku můžeme s výhodou sledovat komunikaci programu s uživatelem. Obr.6

Oříznout

Vytvořené ekvidistanty ořízneme podle zadání příkazem Oříznout. Obr.7

Parametrické vazby

Pro vytvoření vybrání v objektu můžeme použít opět příkaz Obdélník. Ke správné pozici obdélníka lze využít Vazby v kartě Parametrické. Pokud přidáme objektu parametrickou kótu Přímá (d1=20.95), nebude již takto zavazbený obdélník podléhat změnám rozměrů.

Dále s výhodou použijeme vazbu Symetrická, která vymezí obdélník vůči ose. Obr.8

Obdélník zaoblíme příkazem Zaoblit. Obr.9

Další prvky nárysu vytvoříme stejnými metodami, tj. Ekvidistanta, Ořezávání, změna hladiny, ev. opět přidáním parametrické kóty d2 pro střed kružnice.

Hladiny

Změnu hladiny příslušné entity lze provést jejím označením a v místní nabídce změnit aktuální hladinu. Tímto způsobem změníme hladinu děr na neviditelne.

Ke tvorbě tohoto cvičení byl použit program AutocadMechanical 2013, jehož licenci legálně vlastní SPŠ Ostrava-Vítkovice.