

Third School Year

CORROSION

Corrosion is the disturbance of material due to the environment. According to the distribution of *corrosion* we can divide it into two basic groups:

- a) *Uniform corrosion* it forms a little connected *layer* on the surface of a material which is *impermeable* for the environment and this *prevents* the *growth* of further *corrosion*. Typical representatives of metals which continuously corrode are *copper* and aluminium.
- b) *Non-uniform corrosion corrosion* forms a non-continuous coat on the surface of a material, which does not slow down the course of further *corrosion*. Typical examples of non-continuous corroding materials are the *alloys* of iron.

Kinds of Corrosion

- 1. uniform
- 2. non-uniform
- 3. point
- 4. *selective*
- 5. intercrystalline
- 6. transcrystalline
- 7. corrosive crack
- 8. corrosive fracture

Corrosion can take place in electrically *non-conductive* environments (that is chemical *corrosion*) and electrically *conductive* environments (that is electrical-chemical *corrosion*).

Chemical corrosion

We meet most often with chemical *corrosion* when material is heated before thermal treatment, through *forming*, during *welding* and *soldering* and similar processes.

Oxides are the product of chemical *corrosion*. In higher temperatures they form *scales*, which are created by the *layers* of different oxides. In temperatures around 800 $^{\circ}$ C *scales* fall off the surface and *corrosion* then grows intensively. Protection is possible by heating in a protective environment, or using WIG or MIG *welding* methods, or other methods.

Chemical composition of scales

Electrical-chemical corrosion

Electrical-chemical *corrosion* forms most often and it is founded on the principle of the functioning of a galvanic *cell*. The greater the intensity of this *cell* (and of *corrosion* as well), the warmer and more *conductive* the environment. The "electrodes" (of the parts making up the galvanic *cell*) are from various materials.

Material *nobility* determines the tendency of material to corrode and it is determined by the electrical-chemical potential of a material.

Element	Magnesium	Aluminium	Zinc Iron		Tin	Copper	Silver	Gold
Potential (V)	-2,34	-2,07	-0,76	-0,44	-0,14	+0,34	+0,80	+1,50

Examples of the *nobility* of various materials:

The principle of a galvanic *cell*

 $Zn \rightarrow Zn^{++} + 2e^{-}$

 $H_2SO_4 \rightarrow 2H^+ + SO_4^{--}$

 $Zn^{++} + SO_4^{--} \rightarrow ZnSO_4$ (it lays on the bottom of a *cell* and slows *corrosion*)

 $2H^+ + 2e^- \rightarrow H_2$ (it *diffuses out*)

Corrosive macro-cell – it forms by connecting two or more mechanical parts, which have different *nobility* and are found in electrically *conductive* (moist) environments.

Corrosive **micro-cell** – it forms in the individual *cells*, which are found in electrically *conductive* environments. They can be for example, at a weld, which connects the basic material of different *nobility* than the electrode *nobility* is. In a chemically *pure* metal are formed galvanic micro-*cells*, because of the lower electrical-chemical potential on the *edge* of the *grain*. Surfaces with great *roughness* yield to electrical-chemical *corrosion*, because little tops of *unevenness* have a different potential than lower surface areas.

Literature and sources used: Hluchý a kolektiv: Strojírenská technologie 2, SNTL, Internet, Interní odborné texty SPŠ

VOCABULARY

slitina
hliník
článek
vodivý
měď
koroze
korozní
trhlina
difundovat
tváření
lom
zrno
růst
nepropustný
vrstva
kov
ušlechtilost
nevodivý
nerovnoměrný
bodový
předcházet, zabraňovat
čistý
drsnost
okuje
selektivní, výběrový
pájení
nerovnost
rovnoměrný
svařování

COMPREHENSION QUESTIONS

- 1. What is corrosion?
- 2. How is corrosion divided?
- 3. What kinds of corrosion do you remember from the text?
- 4. Where do we meet the chemical corrosion?
- 5. What is material nobility?

EXERCISES

1. Match the verbs with their definitions:

1	fracture	a	the conditions that sth exists in
2	surface	b	an increase
3	pure	c	the same in all parts and at all times
4	corrosion	d	a break in the hard material
5	growth	e	to join pieces of metal together by heating
6	uniform	f	the outside or top layer of sth
7	environment	g	clean
8	welding	h	to destroy sth slowly by chemical action

2. Match the pictures with their descriptions:

1	selective	a	
2	uniform	b	
3	corrosive crack	c	
4	point	d	
5	corrosive fracture	e	

3. Translate the expressions into English:

- 1 korozní lom
- 2 chemická koroze
- 3 slitiny železa
- 4 galvanický článek
- 5 svařování
- 6 ušlechtilost materiálu
- 7 vodivé prostředí
- 8 velká drsnost
- 9 čistý kov
- 10 nerovnost

EXERCISES – KEY FOR TEACHERS

1. Match the verbs with their definitions:

1	fracture - d	a	the conditions that sth exists in
2	surface - f	b	an increase
3	pure - g	c	the same in all parts and at all times
4	corrosion - h	d	a break in the hard material
5	growth - b	e	to join pieces of metal together by heating
6	uniform - c	f	the outside or top layer of sth
7	environment - a	g	clean
8	welding - e	h	to destroy sth slowly by chemical action

2. Match the pictures with their descriptions: 1c 2e 3a 4b 5d

3. Translate the expressions into English:

1	korozní lom	corrosive fracture
2	chemická koroze	chemical corrosion
3	slitiny železa	alloys of iron
4	galvanický článek	galvanic cell
5	svařování	welding
6	ušlechtilost materiálu	material nobility
7	vodivé prostředí	conductive environment
8	velká drsnost	great roughness
9	čistý kov	pure metal
10	nerovnost	unevenness