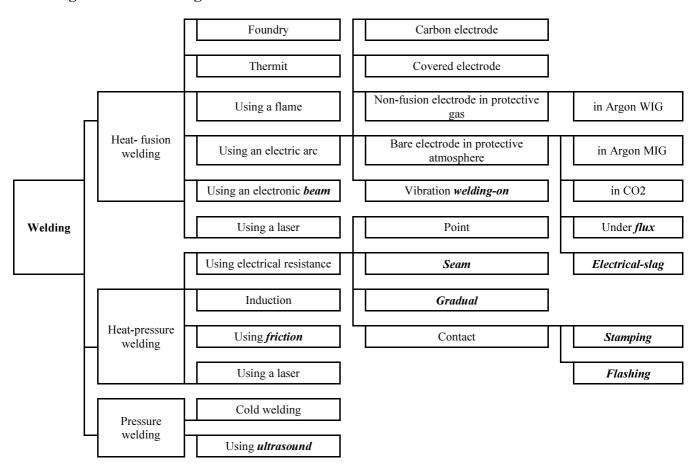


First School Year


DEFORMATION AND TYPES OF WELDS

Welding is a technological process, which leads to the formation of the non-detachable connections of mechanical parts and complete structures from the parts of simple forms. These parts are mostly from metallurgical semi-products (bars, strips, sheets, profiles) and even sometimes from *castings* and *forgings*.

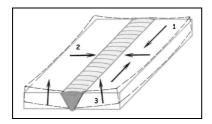
The advantages of welded joints are: durability, high strength, tightness, great work productivity, simple structure.

The disadvantages of welded joints are: the need for qualified staff, a change in the structure and mechanical properties of welded joints, the formation of internal *tension* and deformation.

Welding classification diagram:

Deformation and types of welds

Deformations, which arise during welding, are the direct consequence of the contraction of welded metals when hardening and cooling. The base material prevents the contraction of a welded metal and this causes the formation of tensile stress. In regards to this, a welded metal contracts in all directions in the same way. Internal *stress* works similarly.



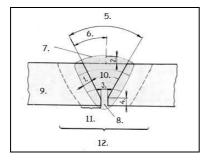
The following *stresses* have importance in practise:

- > longitudinal stress: is formed by the contraction of weld length
- > cross stress: is formed by the contraction of weld width
- > angular stress: it is formed due to the fact that in the upper weld part there is more welded material than in the roots and that is why there is greater contraction, which causes a twisting of material

- 1. Longitudinal stress
- 2. Cross stress
- 3. Angular stress

Basic weld classifications

We can classify welds into 2 basic types: *fillet* and *butt* welds


Fillet welds— they are used where welded parts are pressed into a right angle together. They are single or double sided and are used up to a thickness of 3 mm. Smaller thicknesses are welded towards the front, and bigger thicknesses are welded towards the back.

Butt welds – for these welds welded material has to be suitably put into a certain shape before welding. According to the shape we can distinguish for example, an **edge weld**, a **square butt** weld, a **V-butt** weld, and a **double-V** butt weld. We can find an overview of these welds in Czech Norms and Standards.

Concave and convex fillet welds:

Butt weld:

- 1. Depth of *penetration*
- 2. Weld reinforcement
- 3. Rooted gap
- 4. **Blunting** height
- 5. Opening angle
- 6. *Bevel* angle
- 7. Weld face
- 8. Weld root
- 9. Base material
- 10. Thermally affected area
- 11. Weld and thermally affected area

VOCABULARY

úhlový forging odlitek angular friction arise vznikat tření bar tyč gradual výstupkový beam paprsek longitudinal podélný nerozebíratelný bevel zkosení non-detachable blunting ztupení, otupení penetration závar butt tupý reinforcement převýšení casting výkovek seam švový concave vypouklý sheet plech důsledek, následek consequence square butt weld I svar pěchovací contraction smrštění stamping convex vydutý stress napětí příčný pás cross strip X svar double-V butt weld tensile tahový durability trvanlivost napětí, pnutí tension lemový svar edge weld tightness těsnost elektrostruskový kroucení electrical-slag twisting koutový ultrasound ultrazvuk fillet odtahovací V svar flashing V-butt weld tavidlo navařování flux welding-on

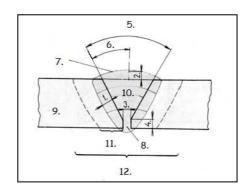
COMPREHENSION QUESTIONS

- 1. What is welding?
- 2. What metallurgical semi-products do you know?
- 3. What are the advantages and disadvantages of welded joints?
- 4. How do we define the longitudinal stress?
- 5. Can you name 2 basic types of welds?

EXERCISE

Criss Cross Puzzle - 17 words were placed into the puzzle.

Across 4. pevnost 5. tavidlo 6. koutový 9. horní 10. plech 12. tupý 13. tyč 14. závar 16. svar		3 4	5
Down 1. tření 2. úhlový 3. tlak 7. těsnost 8. plyn 9. ultrazvuk 11. napětí 15. zkosení	6 7 11 12 14 14	13 13 15 16 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	



2. Describe the picture below:

1	
2	 _
3	
4	 _
5	 _
6	 _
7	 _
8	
9	
10	
11	

EXERCISE – KEY FOR TEACHERS

1. Criss Cross Puzzle

Across	Down
4. strength	1. friction
5. flux	2. angular
6. fillet	3. pressure
9. upper	7. tightness
10. sheet	8. gas
12. butt	9. ultrasound
13. bar	11. stress
14. penetration	15. bevel
16. weld	

2. Butt weld

- 1. Depth of penetration
- 2. Weld reinforcement
- 3. Rooted gap
- 4. Blunting height
- 5. Opening angle
- 6. Bevel angle
- 7. Weld face
- 8. Weld root
- 9. Base material
- 10. Thermally affected area
- 11. Weld and thermally affected area