GRAFIKA VEKTOROVÁ A RASTROVÁ

1. Úvod...2
2. Základní pojmy ...2
 2.1. Rastrová grafika ...2
 Výhody rastrové grafiky ..3
 Nevýhody rastrové grafiky ..3
 2.2. Vektorová grafika ..4
 2.2.1. Práce s vektorovou grafikou ...5
 Výhody vektorové grafiky ...5
 Nevýhody vektorové grafiky ...5
 2.2.2. Typické použití vektorové grafiky ...6
 2.2.3. Kombinace rastrové a vektorové grafiky ...6
 2.3. 3D grafika ...7
 2.3.1. Využití 3D grafiky ..7
 3. Barvy ...8
 3.1. Základní barvy a barevné modely ..8
 3.1.1. Barevný model RGB ..8
 3.1.2. Barevný model CMYK ...10
 3.1.3. Barevná hloubka ..12
 Používané barevné hloubky ..12
 Příklady obrázků v různých barevných hloubkách ...12
 3.2. Alfa kanál ...13
 4. Velikost grafického souboru ..13
 4.1. Komprese ..14
 4.2. Velikost (rozměrová) ..15
 4.3. Rozlišení ..15
 5. Formáty rastrových souborů ..16
 6. Formáty vektorových souborů ..17
1. Úvod

Počítačová grafika je oblastí výpočetní techniky, která potřebuje poměrně vysoký výkon počítače. V současné době by počítač používaný pro vytváření nebo editaci grafiky měl být vybaven grafickou kartou s pamětí min 512 MB, a samozřejmě odpovídajícím (nejlépe vícejádrovým) procesorem a souvisejícími komponenty. Podle pravidla, že počítač je tak výkonné jak jeho nejslabší prvek, je nutno zvážit výběr komponentů a jejich kompatibilitu. Ovšem právě grafická karta hraje klíčovou roli v oblasti počítačových grafických aplikací.

Výsledky počítačové grafiky nás obklopují na každém kroku – tiskoviny, noviny, časopisy, billboardy – to vše muselo projít před zveřejněním retušemi a úpravami v počítači. Speciálním odvětvím počítačové grafiky pak jsou CAD a CAM programy. Zde je již minimální výkon počítače deklarován a tyto systémy při nižších než doporučených parametrech přestávají fungovat.

2. Základní pojmy

Počítače pracují s obrazovými informacemi a ukládají je jedním ze dvou základních způsobů. Buď formou rastrové, nebo vektorové grafiky. Mezi těmito způsoby práce s grafikou je naprosto zásadní rozdíl a každý se hodí pro jiné použití.

2.1. Rastrová grafika

- Obrázek je složen z mnoha malých bodů (pixelů)
- Každý bod má v obrázku svou pozici a barvu.
- Čím více bodů, tím je obraz kvalitnější, má více detailů, obraz má větší rozlišení. Také má ale větší datovou velikost.
- Rastrová grafika se hodí pro záznam realistického obrazu – fotografii, obrázků a grafických scén.

Rozlišení 96 DPI (pixelů na palec) Rozlišení 10 DPI
Výhody rastrové grafiky

- Perfektní a věrné zachování původní scény
- Snadné pořízení obrázku (digitální fotoaparát)

Nevýhody rastrové grafiky

- Velké prostorové nároky na uložení
- Při zvětšování obrazu dochází ke snížování kvality
- Lze zvětšit pouze v závislosti na počtu bodů, ze kterých je obraz složen.

Rastrové obrázky lze upravovat vždy v rámci bodů, z nichž je obrázek složen. To znamená, že nová barva bodu vždy přemaže původní barvu bodu – z tohoto jednoduchého principu se odvíjejí všechny možné úpravy, které lze s obsahem obrázku díky grafickým editorům provádět. Všechny operace s body probíhají automatizovaně v rámci určité komplexní funkce (např. odstranění efektu červených očí, apod.). V rámci rastrových grafických aplikací lze s obrázkem provádět prakticky cokoliv – ořezávat, zmenšovat, zvětšovat, aplikovat různé efekty, prolnutí, rozmazání, zvlášť, fotomontáže, atd.
2.2. Vektorová grafika

Vektorová grafika pracuje s obrazovou informací tak, že obraz je složen z matematicky definovaných křivek – vektorů (body, přímky, křivky). Programy, které pracují s vektorovou grafikou, ukládají grafickou informaci pomocí matematického zápisu. Ten definuje tvar, barvu, tloušťku, výplň a další parametry křivky.

Na obrázcích je srovnání elipsy vytvořené vektorovou (vnitřní elipsa) a rastrovou grafikou (vnější elipsa). Na prvním obrázku je aplikováno zvětšení 4x, na druhém je už zvětšení 100x a je zde již zřejmý rozdíl mezi vektorem a rastrem.
2.2.1. Práce s vektorovou grafikou

Grafické programy, jako např. CorelDRAW, pracují s velkým množstvím „vektorových“ objektů. Ty mohou být téměř libovolně uspořádány a modifikovány. Celkový obraz je složen z mnoha takových objektů. Jednotlivé objekty mohou být různě prolínány, mohou se překrývat v libovolném pořadí a je možné s nimi kdykoliv manipulovat – změnit parametry vektoru, tj. tvar a vlastnosti objektu, barvu jakékoliv křivky, výplně, tloušťku apod.

Následující obrázek je vektorový, vytvořen v programu CorelDRAW. Vlevo je ve své 100% velikosti, vpravo je 2000% zvětšenina detailu. I přes velké zvětšení zůstává obrázek v naprosto dokonalé kvalitě.

Výhody vektorové grafiky

- Neomezené možnosti zvětšení obrázku
- Následná úprava křivek v obrázku
- Možnost pracovat s každým objektem odděleně
- Relativně malá velikost souborů při ukládání

Nevýhody vektorové grafiky

- Neschopnost uložit fotorealistické scény
2.2.2. **Typické použití vektorové grafiky**

Vektorová grafika se využívá v DTP oblasti při tvorbě tiskoven, z vektorů jsou vytvořena písma, používá se při počítačové konstrukci a modelování, pro tvorbu diagramů, schémat či počítačových animací. Výraz desktop publishing (zkráceně DTP) pochází z angličtiny. Jedná se o tvorbu tiskmého dokumentu za pomoci počítače.

2.2.3. **Kombinace rastrové a vektorové grafiky**

Každý typ grafiky (vektorová i rastrová) má sám o sobě omezené využití. Pokud bychom chtěli navrhnout dobře vypadající plakát, budeme potřebovat jednak obrázky a jednak např. text, kterým bude plakát dopracován. To znamená kombinovat rastrovou grafiku s vektorovou. Právě proto existují programy, které dokáží kombinovat oba typy grafického zpracování.

Tento obrázek představuje kombinaci obou grafik. Do rastrové fotografie byl vložen vektorový delfín. Při základním zvětšení vypadá kombinace dobře.

Ovšem např. při desetinásobném zvětšení je již patrný rozdíl obou principů vytváření grafik.
2.3. 3D grafika

3D grafika je odvozenou oblastí vektorové grafiky. Umožňuje pracovat ve virtuálním 3D prostoru, přičemž základní princip vychází z vektorové grafiky, ale pouze s přidanou prostorovou osou Z. V 3D modelovacím programu se ze základních tvarů (kvádří, koule, válec apod.) vytvářejí libovolné trojrozměrné objekty a scény. Vytvořený objekt je potažen materiálem či texturou a může být svícen světly a dále snímán kamerami. Objekty mohou také vrhat stín a působit tak skutečně realisticky. Následující 3D grafika je důkazem, že fikci od reality lze někdy velmi těžce rozlišit.

2.3.1. Využití 3D grafiky

- 3D modeling
- Tvorba virtuálních světů a scén
- Vizuální efekty a triky ve filmových scénách
- Reklama a propagace
- Umění
3. Barvy

U každého bodu, křivky či výplně se definuje barva, a to bez ohledu na to, zda se jedná o grafiku rastrovou nebo vektorovou. Všechny barvy, se kterými PC pracuje, vycházejí pouze z několika základních barev. Díky kombinaci a prolínání těchto barev dochází k vytváření dalších barev, ze kterých je pak složena celá plnohodnotná barevná paleta.

3.1. Základní barvy a barevné modely

Základní barvy mohou být různé podle toho, jaký takzvaný barevný model je použit. Barevný model definuje základní barvy a popisuje způsob jejich míchání. Mezi nejznámější barevný model patří asi model RGB. Je to proto, že v tomto modelu pracují digitální fotoaparáty a většina fotografií je v tomto modelu také uložena.

Asi druhý nejznámější model je model CMYK určený zejména pro tisky. I když jeho praktická verze se skládá ze 4 barev, tak čtvrtá barva (černá, black) se přidává jen pro praktické zlepšení podání tmavých odstínů.

Model HSB (někdy též HSV) není již tak často používán pro praktické ukládání dat, ale jeho znalost a pochopení se hodí zejména pro editace snímků.

3.1.1. Barevný model RGB

RGB je asi nejpřirozenější způsob jak vyjádřit to, co oko vidí. Velmi zjednodušeně říká, jak moc je drážděn červený (R-Red) receptor oka, jak moc je drážděn zelený (G-Green) a jak moc modrý (B-Blue). Sada 3 čísel RGB potom určuje jak barvu, tak i intenzitu světla. K úplné spokojenosti je třeba ještě doplnit minimální hodnoty (v počítačích nejčastěji 0), které budou odpovídat nulovému dráždění receptoru, a maximální hodnoty, nad které je již senzor zcela oslepen a dále nevidí. Tato horní hodnota se v digitální fotografii používá obvykle 255.

RGB model lze skvěle zobrazit jako krychli, kde jednotlivé x,y,z osy odpovídají modrému, červenému a zelenému světlu. Na úhlopříčce krychle je potom stav, kdy všechna tři světla svítí na maximum, tedy vytvoří bílou (RGB=255,255,255).
RGB model udává sílu původního světla rozloženého na sílu jeho 3 barevných kanálů RGB. Stejnou barvu lze tedy snadno obnovit, pokud zajistíme 3 světla přesných barev červená, zelená a modrá a jejich sílu zregulujeme podle RGB hodnot (např. 0 nesvítí, 255 svítí naplno). Jejich vzájemným složením je obnovena původní barva - proto se RGB model nazývá často aditivní model. Hodí se tedy pro zařízení, která světlo vyzařují. Přidají-li se všechna 3 světla naplno, vytvoří se bílá. Taková zařízení jsou zejména televize, monitory, nebo projektoři.

RGB model je aditivní model, tedy založený na přidávání RGB světel na tmavou (nesvítící) podložku (typicky klasický monitor či televize). Přidáním všech světel naplno se vytvoří bílá.
Bohužel sám model RGB nemá žádnou přesnou specifikaci svých základních barev - červené, zelené a modré - a tak vzniklo více RGB modelů. Nejznámější a nejrozšířenější je asi varianta sRGB, která je standardem Windows. Tam jsou definovány jak přesné základní barvy RGB, tak bílý bod i gamma. Barevný model sRGB je prakticky zejména proto, že odpovídá reálným možnostem zobrazení většiny monitorů, a používá se proto masově i na internetu.

3.1.2. Barevný model CMYK

Každý fotograf, který svou práci nekončí u obrazovky monitoru, řeší problém, jak své fotografie nejlépe vytisknout. Ovšem při převodu fotografií na papír často fotografie ztratí svoji krásu, zejména brilanci barev. Příčinou je právě zcela odlišný způsob tvorby barev na papíře a na monitoru. Zatímco zhasnutý monitor je černý a barvy se vytvářejí postupným přidáváním barev RGB (proto model RGB je aditivní a pro monitory přímo určený), tak papír je bílý a tedy odráží teoreticky všechno světlo, které na něj dopadá. Všech možných barev je tedy třeba dosáhnout jinak, a sice krytí bílého papíru inkousty - tedy subtraktivní (odčítací) metodou. Použitím inkoustů s barvami azurová (C-Cyan), purpurová (M-Magenta) a žlutá (Y-Yellow) se podobného efektu dá dosáhnout.
Azurová je doplňková barva k červené, a proto bude odrážet všechno světlo výjma červeného. Podobně purpurová je doplňková k zelené a žlutá k modré. Pomocí CMY barev je tak možné řízeně "ubírat" RGB světlo, a tak docílit barev jaksi opačné - ubíráním z bílé. A to je princip modelu CMYK, kde čtvrtá černá barva (K-black) je přidána jen pro snazší realizaci tmavých barev. Teoreticky není výhodné, prakticky je ale obtížné vytvořit tak ideální inkousty, aby jejich smícháním vznikla opravdu černá nehledě na ekonomické hledisko. Bílá barva vznikne nezobrazením žádné barvy, tj. plocha zůstane nepokryta.

Obrázek rozložený na CMYK barvy. Černá barva jednak pomáhá vytvářet tmavší odstíny, ale také výrazně snižuje spotřebu CMY inkoustů.

Barevný model CMYK se používá u tiskovin, tj. veškeré barevné obrázky v knihách, novinách a časopisech, na vizitkách apod. jsou složeny v barevném modelu CMYK a jsou vytištěny s použitím těchto čtyř základních barev.
3.1.3. Barevná hloubka

Kombinací základních barev dosáhneme vytvoření jednotlivých barevných odstínů. Abychom věděli z kolika barev je obrázek složen byla stanovena tzv. barevná hloubka. Ta určuje, kolik bitů je potřeba k popisu konkrétní barvy v obrázku. Čím větší je barevná hloubka, tím více barev obrázek obsahuje a tím je kvalitnější.

Barevná hloubka je udávána jako jedno číslo a řídí, kolik různých barev jsme schopni zpracovávat. Například může jít o 16,7 mil. barev či třeba jen 256 barev. To již záleží na konkrétním zařízení.

Barevná hloubka je udávána jako maximální počet bitů určených pro záznam barvy. Jde tedy pouze o binární přepočet, kdy číslo udává mocninu dvojky.

Například 24bitová hloubka odpovídá 2^{24}, tedy 16,7 mil. barev. Větší barevná hloubka tedy zvětšuje škálu různých barev a přirozeně také paměťovou náročnost obrázku či videa.

Používané barevné hloubky

- **1bitová barva** ($2^1 = 2$ barvy) také označováno jako Mono Color (nejpoužívanější je, že bit 0 = bílá a bit 1 = černá)
- **4bitová barva** ($2^4 = 16$ barev)
- **8bitová barva** ($2^8 = 256$ barev)
- **15bitová barva** ($2^{15} = 32 768$ barev) také označováno jako Low Color
- **16bitová barva** ($2^{16} = 65 536$ barev) také označováno jako High Color
- **24bitová barva** ($2^{24} = 16 777 216$ barev) také označováno jako True Color
- **32bitová barva** ($2^{32} = 4 294 967 296$ barev) také označováno jako Super True Color (True Color)
- **48bitová barva** ($2^{48} = 281 474 976 710 656 = 281,5$ biliónů barev) také označováno jako Deep Color

Příklady obrázků v různých barevných hloubkách

<table>
<thead>
<tr>
<th>Barevná hloubka</th>
<th>Obrázek</th>
<th>Barevná hloubka</th>
<th>Obrázek</th>
<th>Barevná hloubka</th>
<th>Obrázek</th>
</tr>
</thead>
<tbody>
<tr>
<td>1bitová barva</td>
<td></td>
<td>8bitová barva</td>
<td></td>
<td>24bitová barva</td>
<td></td>
</tr>
</tbody>
</table>
3.2. Alfa kanál

Alfa kanál je složka pixelu udávající hodnotu průhlednosti tohoto pixelu. Typickým příkladem je barevný model RGBA, kde mimo barevných složek R (červená), G (zelená) a B (modrá) je složka A nesoucí informaci o průhlednosti. Průhlednost pixelu znamená, že pokud bitmapový(rastrový) obrázek s definovanou průhledností překrývá jiný obrázek, původní obrázek na pozadí bude zobrazen v daném bodě pixelu s intenzitou danou průhledností pixelu obrázku na popředí. Alfa kanál používá například grafický formát PNG.

Levý obrázek je ve formátu PNG, pravý ve formátu JPG.

4. Velikost grafického souboru

Teoretickou velikost souboru s obrázkem je možné spočítat takto: šířka v pixelech × výška v pixelech × barevná hloubka v bitech

Příklad - výpočet velikosti souboru: pro uložení obrázku o rozměrech 800 × 600 pixelů v barevné hloubce 24 bitů je třeba 800 × 600 × 24 = 11 520 000 bitů = 1 440 000 bytů = 1 406 kB = 1,37 MB.
4.1. Komprese

Komprese je způsob zmenšení objemu dat. Díky kompresi bude mít obrázek menší datovou velikost při zachování určité kvality. Obrázky je nutné komprimovat zejména, pokud jsou použity v síti Internet, kde platí, že čím menší obrázek, tím rychleji se ze stránky načítá.

Ztrátová komprese – při komprimaci vypouští méně důležitá data. Tento způsob kompresy má vliv na kvalitu obrazu – nenávratně sníží jeho kvalitu, ale tak, aby to bylo co nejméně pozorovatelné. Tato komprese je vysoko účinná, dokáže zmenšit velikost souboru až na zlomek původní velikosti.

Bezztrátová komprese – při komprimaci vypouští pouze ta data, která jsou skutečně nepotřebná. Tento typ kompresy nemá vliv na kvalitu obrázku, nelze však dosáhnout příliš velké úspory místa.
4.2. Velikost (rozměrová)

Šířka a délka obrázku udávaná v bodech. Např. velikost 800 x 600 znamená 800 bodů na šířku a 600 bodů na výšku.

Rozměrová velikost jako údaj je spjata s rozlišením, protože pokud u stejného obrázku dojde ke zvýšení rozlišení, zvětší se počet bodů v obrázku a tedy i rozměrová velikost v bodech.

Rozměrová velikost je důležitá pro přípravu obrázku pro elektronické zdroje (zda bude obrázek dostatečně velký pro požadovaný záměr).

Rozměrová velikost bývá někdy mylně definována jako rozlišení.

4.3. Rozlišení

Rozlišení je další důležitý parametr počítačové grafiky. Význam má především u grafiky rastrové. Rozlišení udává, kolik obrazových bodů obsahuje obrázek v normalizované délce jednoho palce (2,54 cm) – DPI - Dots Per Inch.

Čím více obrazových bodů, tím je obrázek kvalitnější, jemnější a obsahuje více detailů. V kapitole 2.1 Rastrová grafika jsou ukázky rozdílných rozlišení stejných obrázků.

U digitálního fotoaparátu je třeba nastavit dostatečné rozlišení, abychom měli kvalitní fotografie. Musíme však brát v úvahu to, že s vyšším rozlišením roste datová velikost obrázku.

Jaké rozlišení?

- V profesionální počítačové grafice - 300 DPI
- Pro tisk na tiskáru stačí rozlišení obrázku - 150 DPI
- Pro umístění obrázku na webové stránky stačí - 75 DPI
- S rozlišením se setkáváme i u tiskáren – výrobce dává s jakým maximálním rozlišením je tiskárna schopna vytisknout dokument – v současnosti to bývá 600 či 1200 DPI
5. Formáty rastrových souborů

<table>
<thead>
<tr>
<th>Formát</th>
<th>Typické použití</th>
<th>Klady</th>
<th>Zápory</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIF</td>
<td>Internetové stránky, kde je třeba průhlednost nebo animace</td>
<td>Umí průhlednost</td>
<td>Umí maximálně 256 barev (pouze 8bitová barevná hloubka)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Umí animaci</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Umí je číst inter. prohlížeče</td>
<td></td>
</tr>
<tr>
<td>JPG</td>
<td>Internetové stránky, digitální fotografie, archivace vlastních obrázků, malá</td>
<td>Lze velmi dobře optimalizovat</td>
<td>Čím větší komprese, tím menší kvalita</td>
</tr>
<tr>
<td></td>
<td>velikost souborů vzhledem ke kvalitě obrázků</td>
<td>Vynikající komprese</td>
<td>Neumí průhlednost</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Malá velikost</td>
<td>Neumí animace</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Umí je číst inter. prohlížeče</td>
<td></td>
</tr>
<tr>
<td>BMP</td>
<td>Formát obrázku pro drtivou většinu aplikací ve Windows</td>
<td>Pracuje s ním většina aplikací</td>
<td>Nekomprimovaný formát</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nekomprimovaný formát</td>
<td>Větší velikost souborů</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jednoduchý, všude dostupný</td>
<td></td>
</tr>
<tr>
<td>TIFF</td>
<td>Použití v profesionálnější grafice, potřeba zachování původní nezkompromované</td>
<td>Nekomprimovaný formát</td>
<td>Příliš velká velikost</td>
</tr>
<tr>
<td></td>
<td>podoby obrázku</td>
<td>Špičková nezkreslená kvalita</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Umí průhlednost</td>
<td></td>
</tr>
<tr>
<td>PNG</td>
<td>Určený pro internetové stránky</td>
<td>Nástupce GIF</td>
<td>Není příliš rozšířen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Umí vše co GIF + více barev (24bitová barevná hloubka)</td>
<td></td>
</tr>
</tbody>
</table>
6. Formáty vektorových souborů

<table>
<thead>
<tr>
<th></th>
<th>Typické použití</th>
<th>Klady</th>
<th>Zápory</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMF</td>
<td>Vektorový formát Windows pro kliparty, menší soubory, nevhodný pro profesionální grafiku</td>
<td>• Rozšířený</td>
<td>• Neumí CMYK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Podporuje jej mnoho programů</td>
<td>• Neumí vnořené rastrové objekty</td>
</tr>
<tr>
<td>AI</td>
<td>Formát Adobe Ilustrátoru</td>
<td>• Rozšířený v profesionální grafice</td>
<td>• Nepracují s ním amaterské programy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Umí CMYK</td>
<td></td>
</tr>
<tr>
<td>EPS</td>
<td>Umií v sobě nést jak vektorové objekty, tak zapouzdřené rastrové obrázky</td>
<td>• Univerzální</td>
<td>• používá se v profi grafice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Umí CMYK</td>
<td>• Běžné programy s ním neumí pracovat</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Může obsahovat fonty, rastrové obrázky apod.</td>
<td></td>
</tr>
<tr>
<td>DWG</td>
<td>AutoCAD, CAD/CAM konstrukční aplikace. Data lze převést z konstrukčního programu do vektorového nekonstrukčního programu</td>
<td>• Lze převést data z CAD aplikací</td>
<td>• Kromě svého specifického účelu je jinak nepoužitelný</td>
</tr>
</tbody>
</table>